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ABSTRACT
Segmentation and tracking methods have been widely explore.

However, they are often computationally heavy or require con-

straining assumptions. We present in this paper a new system

for real-time simultaneous segmentation and tracking, with-

out any hypothesis on target appearance, image background

or camera properties. The proposed approach (SUGVFB) is

an active contour modeled with B-splines and which evolu-

tion process is using a speeded up Gradient Vector Flow, char-

acterized by a faster computation of the edge diffusion pro-

cess. The synergy of these two powerful components enables

precise, robust and real-time tracking of complete non-rigid

mobile objects. Our method has been validated on synthetic

as well as natural video sequences.

Index Terms— Video Real-Time Tracking, Segmenta-

tion, Active Contours, B-Splines, Gradient Vector Flow

1. INTRODUCTION

Tracking is one of the fundamental topic in computer vision.

A lot of applications such as medical imaging diagnosis, hu-

man - computer non invasive interfaces, sport coaching and

broadcasting or video-surveillance, are requiring this tech-

nique. In this work, we focus on mobile non-rigid objects in

color video sequences captured by moving camera. We aim a

real-time precise segmentation and tracking of the whole ob-

ject without any assumption on the target object, image back-

ground or camera position. On the one hand, tracking ap-

proaches using mean shift [1] or dynamic Bayesian network

[2], rely on target appearance models and can only track cen-

troid or rectangle to localize the target object. On the other

hand, segmentation methods need usually hypothesis on the

background [3] or on camera position [4], to detect the ob-

ject. Moreover, they are often time consuming [5], disabling

a real-time processing of a video sequence.

To achieve simultaneously tracking and segmentation in

real-time, we use an active contour [6] approach, modeled

by B-splines, computed using [7] algorithm. We couple effi-

ciently this smoothed active contour with a speeded up gra-
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dient vector flow external force [8]. In our work, we have

used neither prior knowledge of the target nor its trajectory to

keep our tracker as flexible as possible in case of object se-

vere deformations and huge appearance changes. In addition,

no assumption are made on the camera motion or position.

Our system is thus not requiring any further camera calibra-

tion. The developed approach provides in real-time the whole

target contour using intensity gradient information. Results

demonstrate our method robustness and efficiency, even in

difficult situations like the presence of disturbing contours in

the background.

The paper is structured as follows. In Section 2, we de-

scribe our fast active contour method. In Section 3, we vali-

date our approach both on synthetic and natural images. We

show our results of contour real-time detection on real video

sequences in Section 4. Finally, conclusions are exposed in

Section 5.

2. ACTIVE CONTOURS

Active contour, also called snake and introduced by Kass et

al. [6], is an energy minimizing deformable curve whose be-

havior description uses concepts borrowed from classical me-

chanics.

We have chosen a parametric active contour method for

reaching computational efficiency, as only few sample points

are required to describe the target-object boundary. To recon-

struct the contour from these sampled points, B-spline for-

malism is applied to model the active contour r(s) defined by
a weighted sum of N control points Qk and basis functions

Bn
k (s) [9],

r(s) =
N−1∑

k=0

Bn
k (s)Qk (1)

The contour shape is constrained by its own internal en-

ergy whilst the external energy drives it towards desired image

features, in our case the object edges.

rt(s, t) = (αr
′′
(s, t) − βr′′′

(s, t)) + (v) (2)

The internal force defines the contour physical properties

(α: elasticity, β: rigidity) and acts as a smoothness constraint.
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The external force v is application-based, and is used for
guiding the active contour toward the image features of in-

terest. For that, we are employing the gradient vector flow

(GVF) mechanism [8] with edge map f and regularization
parameter μ, because the GVF has an increased capture range
and can guide contour to move towards both concave and con-

vex boundaries. Typically, the required number of iterations

n [8] [10] to solve the partial eq. 3 for an image of a×b pixels
is n =

√
a× b.

vt = μ∇2v − (v −∇f) |∇f |2 (3)

The GVF [8] and its variants [5] [10] main disadvantage is

the high computational time consumption in order to be gen-

erated, compare to the entire contour convergence process as

described by the eq. 2. To overcome this problem, we pro-

pose a speeded up GVF (SUGVF), characterized by a faster

computation of the diffusion process, requiring ten times less

iterations than usually recommended to solve eq. 3.

The proposed SUGVFB active contour results from the

incorporation of the SUGVF into the B-spline convergence

mechanism, creating a positive synergy between internal and

external active contour forces and leading to contour preci-

sion and robustness towards noise inherent to images. The

main advantages of this method are its capability to guaran-

tee the smoothness of the contour dealing well with non-rigid

target-objects and its fast computationally speed necessary for

real-time applications, with no contour precision sacrifice nor

prior models.

3. VALIDATION

In this section, the performance of the GVF, SUGVF and

SUGVFB build-on contours are compared on both synthetic

and natural images. The traditional GVF contour consists on

a parametric active contour without any B-spline formalism,

evolving due to the GVF external force, solved for n itera-
tions. The SUGVF contour does not involve B-splines either,

and rely on the SUGVF external force, based on the GVF

computed with only n/10 iterations. The proposed SUGVFB
contour is as described in the previous section 2. For each test

image, the same initialization and parameters are employed

for the GVF, SUGVF and SUGVFB contours.

3.1. Synthetic Images

The performance of GVF, SUGVF and SUGVFB methods

have been tested on a black and white image (Fig. 1) and

on a noisy one (Fig. 2).

First, we note that the traditional GVF contour presented

in Fig. 1(b), needs a ten times longer computational time to

achieve the same result as the proposed SUGVFB contour in

Fig. 1(d). Second, we observe that our SUGVFB contour

delineates exactly the target-object whilst the SUGVF contour

is far from the target, as shown in Fig. 1(c).

In the case of noise, the contour precision performances of

the SUGVFB method, shown in Fig. 2(d), overtake the GVF

and SUGVF ones, as presented in Fig. 2(b) and Fig. 2(c),

respectively. Thus, the incorporation of the B-spline mecha-

nism prevents the SUGVFB contour from noise disturbance,

all being real-time. Thereby, for less iterations, consequently

in a smaller computational time, the SUGVFB method per-

forms with a better contour precision than the traditional GVF

contour that is much more disturbed by the clutter.

3.2. Natural Images

The performance of GVF and SUGVFB methods have been

also tested on natural images (Fig. 3). For the initialization,

both large capture and narrow capture range have been chosen

as shown in Fig. 3(a). Moreover, the initial contour could

cross the target as the GVF based-on convergence processes,

therefore the SUGVFB, own a bi-directional capacity. The

traditional GVF is computed using ten times more iterations

to calculate the field. Moreover, we can observe that the GVF

resulting contour in Fig. 3(b) is disturbed by the background

noise or suffer of a lake of precision, whilst the SUGVFB

contour could overcome such difficulties as presented in Fig.

3(c). Thus, for natural images as for synthetic images, the

proposed SUGVFB outperforms the traditional GVF in both

rapidity and precision.

4. APPLICATION: TRACKING

The SUGVFB active contour method, described in section 2,

has been successfully applied to real-time tracking of mobile

non-rigid objects, as detailed below.

4.1. Implementation

While tracking, the segmentation results of the previous frame

are used as initial conditions in the next frame. The B-splines

are implemented using the fast B-spline algorithm [7] and the

external force is based on the proposed SUGVF.

4.2. Results

SUGVFB active contour method has been validated on real

soccer and video-surveillance sequences.

Fig. 4 shows the tracking results of our method on a

video-surveillance sequence from a standardized dataset, us-

ing a static camera without lense distortion compensation.

Because of the coupling of B-splines with SUGVF, the tracker

could handle successfully the color similarity between the

background and the object. Moreover, as there is no back-

ground assumption into our method, the system deals well

with target momentary immobility like in Fig. 4(b).

In Fig. 5, our system results are presented for the soccer

player tracking in a match recorded by mobile camera. The

tracker overcomes the disturbance caused by high gradient
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(a) Initialization (b) GVF (c) SUGVF (d) SUGVFB

Fig. 1. Performance of GVF, SUGVF and SUGVFB on a synthetic image, (a) initial contour, (b) GVF, with n iterations, (c)
SUGVF (GVF with n/10 iterations), (d) SUGVFB (GVF with n/10 iterations and B-spline formalism).

(a) Initialization (b) GVF (c) SUGVF (d) SUGVFB

Fig. 2. Performance of GVF, SUGVF and SUGVFB on a synthetic image with noise, (a) initial contour, (b) GVF, with n
iterations, (c) SUGVF (GVF with n/10 iterations), (d) SUGVFB (GVF with n/10 iterations and B-spline formalism).

area like the white line in Fig. 5(a), thanks to the balance

between the B-spline resulting internal forces and the SUGVF

based-on external force. For the same reason, our SUGVFB

method is also able to support partial occlusions as shown in

Fig. 5(b) or background clutter as in Fig. 5(c).

As illustrated, the method is well suited for tracking of

non-rigid moving objects and is amenable to real-time imple-

mentation. The approach is robust for tracking on background

similar to the target appearance (Fig. 4) or with clutter back-

ground (Fig. 5). Moreover, the tracker supports well severe

deformations of the non-rigid target like in Fig. 5(a) and ap-

pearance changes as shown in Fig. 4(a)-(b).

5. CONCLUSIONS

This paper proposed a new system enabling simultaneously

tracking and segmentation of mobile objects in video sequence

in real-time without any assumption on image background or

camera position. The essence of this method consists in a

contour modeled by the B-spline formalism, and driven by

a speeded up Gradient Vector Flow (SUGVF) external force.

As shown in this work, the proposed SUGVFB active contour

is converging to the target-object ten times faster than the tra-

ditional GVF one, for the same contour precision. In case

of noise, the SUGVFB active contour accuracy outperforms

the GVF one. Hence, our method is well suited for precise

real-time tracking of boundary complex objects.
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(a) (b) (c)

Fig. 3. Performance of GVF and SUGVFB on natural images, (a) initial contour, (b) GVF, (c) SUGVFB

(a) Frame 616 (b) Frame 909 (b) Frame 943

Fig. 4. SUGVFB Tracking results on video-surveillance sequence of 1000 frames.

(a) Frame 282 (b) Frame 419 (c) Frame 1275

Fig. 5. SUGVFB Tracking results on soccer sequence of 1500 frames.
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