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ABSTRACT 

The general problem of object tracking can be modeled as a 

Markov process and solved by computing probability distributions 

of the possible object states, followed by MAP estimation. This 

paper presents a new framework for the efficient estimation of the 

probability distribution of the states. In contrast to particle filters, 

where the possible states are numerous and random, we limit the 

possible states to a finite candidate set which is guaranteed with 

high probability to contain the true state of the object. After the 

problem is reduced to a finite-state Markov process (FSM), 

forward filtering is used to estimate the distribution of the object 

state. Moreover, the Viterbi algorithm can also be used to estimate 

the most likely state sequence. We test the new framework by both 

these methods and compare the tracking results. Experimental 

results show the effectiveness and efficacy of the proposed 

algorithm.

Index Terms— object tracking, finite-state Markov process, 

forward filtering, Viterbi algorithm, particle filters

1. INTRODUCTION

Real-time object tracking in complex environments is one of the 

key problems in visual surveillance. There are two major 

categories of algorithms: bottom-up process which usually consists 

of target representation and localization and top-down process 

which usually deals with evaluation of different hypotheses. 

Bottom-up processes like mean-shift [1] and blob model [2], are 

usually more sensitive to occlusion, noise and inconsistent 

movement. Top-down process is mostly filtering and data 

association which model the discrete-time dynamic system as 

Markov process through state distribution estimation. Kalman filter 

[3], Extended Kalman filter [4], particle filter [5] all have been 

used for the purpose of tracking objects. The probabilistic 

framework of these methods improves the robustness of the tracker. 

While Kalman filters are restricted to Gaussian distributions, 

particle filters can propagate more general distributions, which is a 

more practical assumption.

Particle filtering is based on Monte Carlo methods. The 

current probabilistic density of the object state (usually position 

and velocity) is represented by a set of random samples with 

associated weights and the new density is propagated based on 

these samples and weights and the observation. In order for the 

algorithm to converge to the correct density, the number of 

particles used must be large (at least hundreds). With the increase 

of dimensionality of the state space, the algorithm becomes much 

more computationally complex. In many real-time applications 

only a small percentage of the system resources can be allocated 

for tracking. Therefore, it is desirable to keep the computational 

complexity of a tracker as low as possible.  

The main contribution of this paper is to introduce a new 

framework for efficient estimation of the general probability 

distribution of the object states for top-down object tracking 

process. The central idea is to generate at each time a set of 

candidate states which are guaranteed with high probability to 

contain the true state of the object we want to track. As we reduce 

the state space to a finite number of candidate states, the tracking 

problem can be modeled by a finite-state Markov process (FSM). 

This probabilistic framework brings the advantage of combining 

color, motion of the object and motion of the scene together in a 

principled manner. Assuming the density of the states is non-zero 

only for those candidate states, forward filtering is used to 

efficiently estimate the distribution of the object state and the 

tracker is estimated according to maximum a posterior (MAP) 

criterion. The Viterbi algorithm, alternatively, can be used to 

directly estimate the most likely state sequence. As the number of 

candidate states is much smaller than the number of particles for 

most applications, the computational complexity of our algorithm 

is much lower than that of particle filters. 

The success of the algorithm depends on the process for 

generating candidate states so that the true state is always included 

in the set. This requirement is indeed satisfied in most scenarios 

due to sophisticated foreground segmentation methods. We give an 

example at the end of the paper that even if for some frames the 

candidate set does not include the true state, the probabilistic 

framework is able to re-localize the object when the true state is 

included at some later time for persistent frames. 

The paper is organized as follows. The description of the 

FSM tracking is discussed in Sec.2. The experimental results are 

presented in Sec.3, followed by Sec.4, with conclusions. 

2. OBJECT TRACKING BY FSM 

FSM, among which Hidden Markov Model (HMM) is one specific 

kind, has been used for object tracking in a way different from ours. 

In [6], the whole range of the state space is divided into a finite 

number of cells with each cell associating with one state of the 

Markov chain. In [7], HMM is used spatially in one frame to find 

the contour of the object. Our method limits the states space to a 

set of candidate states and applies FSM temporally.  

2.1 Markov Process Formulations 

A Markov process is a temporal probabilistic model in which the 

state of the process is described by a single discrete random 

variable. It is a widely used model for top-down object tracking 

algorithms [3]-[5]. In the context of object tracking, the state at 
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time t is the information characterizing the object (usually

location and velocity), which is denoted and its history is

. Similarly, the set of image features (observation)

at time

t

},...,{ 1:1 tt

t  is  with history . Note that there is no 

assumption (linearity or Gaussianity) about densities in the general

treatment.

t
},...,{ 1:1 tt

The object dynamics is assumed to form a Markov Chain:

)|()|( 11:1 tttt pp

which means that the new state is only dependent on the previous

state and not on any earlier ones. The conditional distribution

 is called the transition model.)|( 1ttp

The assumption for observation is that it depends only on

the current state and not on the previous states or observations:

t

)|(),|( 1:1:1 ttttt pp

It is called the observation model because it describes how the

features are affected by the actual state of the object.

In addition to the transition model and observation model, we

assume the distribution over initial states is uniform. These three

distributions give us a specification of the complete joint

distribution over all states. An illustration of the state diagram is

given in Fig. 1 where the arrow indicates direct influences.

Figure 1: Markov process illustration

Once the probability density of the state(s)  ( ) given all

the measurements up to that moment is known, an optimal

solution to the object tracking problem is the maximum a

posteriori probability (MAP) estimation of the state.

t t:1

t:1

After we give specific transition and observation models for

tracking in Sec. 2.2, in Sec. 2.3, we discuss how to reduce the state 

space to a set of candidate states in order to use techniques such as

forward filtering [8] and the Viterbi algorithm [9] to find the 

optimal solution of estimation, described in Sec. 2.4 and 2.5

respectively.

2.2 Transition Model and Observation Model

As dynamics of moving objects are often modeled as a second

order process, we define the state of the object to be

1t

t

t

where is the position of the object at time
t

t  and 
1tt
 is the

velocity of the object. As the motion of the object will satisfy some

temporal motion continuity constraints, we can predict the new

position by current position and velocity of the object as

and consider the probability of a new

position monotonically decreasing with the distance from the 

previously predicted position. A convenient distribution is the

Gaussian with centre located at the predicted position:

)( 211 tttp
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The main image feature used in our algorithm is the color

histogram of the object. Color information is a powerful feature to

feature of an object or a region of interest often forms a very

persistent localization cue.

The observation model

characterize the appearance of tracked objects since the color

must be defined in such a way as to

favor color histograms close to the reference histogram of the

object we are trying to track. Using the same color model as in [10],

we denote by c  and c

ref
 with c {R,G,B} the normalized color

histogram of t ima patch position and histogram of 

reference object in the red, green or blue (RGB) channel. The

distance metric is based on the Bhattacharyya similarity coefficient:

he ge at
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where denotes each bin of the histogram and  is the total

e

i B

number of bins. Then the observation model can be d fined as: 
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When the object is composed of patches of distinct color, we 

can keep the relative spatial arrangement of these different patches

by splitting the object region into sub-regions, each of which has

its own color histogram. Assume each sub-region is rigidly

connected and the colors in different sub-regions are conditionally

independent, we can modify the observation model as: 
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where  is the histogram of sub-region c

refj,
j  and is the total

is non-Gaussian, we are not able to use a

nt frame

Assu

ments.

Thus

objects when it re-appears and persists for several frames.

RN

number of sub-regions.

2.3 Candidate Selection

As the observation model

Kalman Filter to estimate the state. Instead, we need to estimate

the probability density function (pdf) of )|( :1ttp . A possible

state can be any pixel location in the curre and previous

frame. If there are 320x480 pixels, for example, for each frame, the

size of the state space will be as big as (320x480)2, which is 

formidable in term of computational complexity. Particle filters

have reduced the space by careful sampling in the state space,

while we try to decide a deterministic candidates set so that the

true state is always included. The same idea has been used in [9].

We generate the candidate states by foreground segmentation.

me we are using a stationary camera, the detection of

foreground can be achieved by comparing each new frame with a 

representation of the background. Block based, rather than pixel

based modeling of background can take advantage of the spatial

correlation of the pixels and are robust to illumination change and

noise. Adopting the DCT-based segmentation approach developed

in [11], two features are used for each 8x8 block: The DC feature

gives information on the average intensity and the AC feature, the

square sum of low frequency AC coefficients, gives information on

the energy of the block. After comparing these two features with

the background features, a foreground block is detected and a

candidate object state (position) is found if the image patch (same 

size as the object) at that position contains enough foreground

blocks. This segmentation method has been shown to be invariant

to noise and small scene changes, which is detailed in [11].

In most situations, the object is part of foreground seg

, the true state is always included in the candidate set. In the

case when the candidates do not contain the true state, as may be

caused by occlusion or the object leaving the scene, the

probabilistic framework can still guide the tracker back to the
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2.4 Forward Filtering

Having set up the structure of a generic temporal model, we can

only used inference task is to

estim

formulate the object tracking problem as different inference tasks

according to different applications.

For online-tracking, one comm

ate the posterior distribution over the current state, given all

evidence to date, which is )|( :1ttp . Then MAP estimation is

performed to find the optim  The theoretically optimal

distribution computation is provided by the recursive Bayesian

filter which solves the problem in two steps: first, the already

computed pdf of the states at time 1

al state.

t is projected forward to time

t , as determined by the dynamic equation; then it is updated using

e new evidence
t
.th

Prediction step

Updating step: 

This whole process is called forward filtering. The second

term

ch bigger 

uivalent to particle

filter

 the posterior distribution over the 

oth the pa

h of the

rward dynamic

prog

:

1
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 in the summation is the already computed pdf of the last time

step. Thanks to the candidate selection, we can efficiently compute

the summation because the number of states is limited (or

equivalently, the values of pdf of non-candidate states are all zero).

If the average number of candidate states is n , as we need to

compute the density for each current can idate state, the

computational complexity at one time step is )( 2nO . The

computational complexity of particle filters is )(NO N  is

the number of particles used. As N is usually an
2n , the computational load is great reduced.

Forward filtering can be shown to be eq

d

, where

 mu th

ly

s under the finite state assumption by choosing some

appropriate proposal distribution for generating new samples. The

proof can be found in a future journal version of this paper.

2.5 Viterbi Algorithm

Another inference task is to find

state sequence given all evidence to end, which is )|( :1:1 TTp .

Application for this task is off-line tracking where b st

object through the whole video. Usually it is not advisable to

compute the density for each possible state sequence explicitly as

is done in forward filtering. There is a Viterbi algorithm for finding

the MAP estimate of the state sequence directly.

The Viterbi algorithm is actually a fo

and the future information can be used to estimate the pat

ramming problem. The recursive relationship between the

most likely path to state
t
 and most likely path to state

1t
 is: 

)|(max)|(max)|(

),,|(),|()|(max

)|,,(max)|,(max 1:11:1:11:1 ttttttt pp
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At the end, the algorithm will give the probability for the most

likel

ULTS

The first vide king towards

he most

likel

y sequence reaching each of the final states. One can then

select the most likely sequence overall by going back from the 

final state to internal states. It is again clear that without a good

candidate selection process to limit the number of possible states at 

each time step, it is difficult to implement the Viterbi algorithm

which needs to evaluate the path to each possible state. The

computational complexity is also )( 2nO if the average number of

candidate states for each time step is

3. EXPERIMENTAL RES

n .

o is an indoor scene with two people wal

each other and then passing by one another. Figure 2 shows how 

the state-density evolves as tracking of the occluded person

progresses by forward filtering. Initial distribution is simply

uniform in the absence of any measurements, shown in frame 1.

The density is only non-zero where the two people are, based on

foreground segmentation. As tracking progresses, one peak is

much higher than the other (for some frames, the other peak is

missing on the figure since it is relatively too small), indicating

where the object we want to track is. Though the tracker was 

designed to track just one person, one can easily extend it to track

multiple objects by the peaks of the state-density function.

We also test using the Viterbi algorithm to estimate t

y state sequence of the object. The resulting object position vs.

time is plotted in figure 3 with solid line, together with the result of

forward filtering by the dotted line.

Fig 2: State-density evolution in tracking one occluded person 
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These two methods differ only

whe

ct

mod

for the first several frames 

re initialization occurs and the frames where the occlusion

occurs. The Viterbi algorithm gives a smoother trajectory of the

object position because it takes into account future information.

However, in case there is need to update the reference obje

el during tracking, the Viterbi algorithm is not applicable

because it does not know the object location until the end of the

video while forward filtering can estimate object location and

update object model at each time step. 

Figure 3: Tracking result for Viterbi algorithm (solid line) and

We test both rbi algorithm on 

two

mber of candidates is less than

10 f

Table 1: Tracking performance of different videos

i

forward filtering (dotted line) 

the forward filtering and Vite

more sequences. The second video has the same background

as the previous one but with different object motion. Two people

walk towards each other, stop, turn around and walk back. The

third video has a river with running water. Thanks to our block-

based foreground segmentation, we avoid labeling the running

water and successfully select the person as the candidate. The

tracking result is shown in Table 1 where the average distance (DT)

of ground-truth object to tracker-submitted object is used to

indicate the performance. (DT=1 is 8 pixels as the candidate is 

block based.) The performance of Viterbi algorithm is a little better

than forward filtering as expected.

For each video, the average nu

or each frame. Compared with the computational complexity

of particle filters, where usually hundreds of particles are used, our

algorithm greatly saves computational load and achieves real-time

operation.

 Total # forward Viterb

frames filtering

132 0.15 0.08

300 0.1 0.05

1041 0.2 0.15

s previously indicated, the success of the algorithm depends 

on th

one

e frames for the density over the true

A

e process for generating candidate set for which the true state

is included. This requirement is satisfied for the testing videos

discussed above. The following example illustrates the situation

where for some frames the candidates do not include the true state.

In the video of two moving people in a parking lot, when the

we want to track is occluded by a tree in the background for

some frames, only the other person is considered as the candidate 

so the tracker goes to the other person. When the one we want to 

state to accumulate and when the density is big enough, the tracker

goes to the right person. Figure 4 shows some selected frames.

track re-appears, it takes som

Figure 4: Sample frames (Frame 41, 56, 96,111): solid rectangle

indicates tracker, dotted rectan le indicates true object location

In this paper, we mod task by a finite-state

Markov process by to a candidate set, 

Time Tracking of

Non- Rigid Objects EE Proc. of CVPR,

uman body”, IEEE Trans. Pattern Anal. 

Conf. on CVPR, Vol.2, 

nd trajectory guided recognition of actions”,

Computer Vision, 

EE Intl. Radar Conf., pp.625 – 628, 1990 

001

n and the Viterbi

6

g

4. CONCLUSIONS

eled the object tracking

reducing the state space

which is determined by block-based foreground segmentation. The

probabilistic framework combines color, motion of the object and

motion of the scene together in a principled manner. Forward

filtering is used to estimate the probability distribution of the states

and the Viterbi algorithm is used to estimate the most likely state

sequence. Either of these two methods can be used for tracking

according to different applications. The algorithm achieves very

good performance and is a good alternative for particle filters when

computational complexity is required to be low.
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