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ABSTRACT 

We propose an algorithm to detect depths in a light field. Specifi-
cally, given a 4D light field, we find all planes at which objects are 
located. Although the exact depth of each pixel in the space is left 
unknown, the partial information obtained is very useful for many 
applications, such as synthetic aperture photography and all-
focused rendering. Our algorithm measures the degree of focus of 
different planes by calculating the ratio of high frequencies to the 
low frequencies. To handle different depth distributions, we refor-
mulate the maximum detection problem to a maximum-cover prob-
lem that can be solved efficiently by dynamic programming. Com-
pared with auto-focusing and per-pixel depth estimation, our algo-
rithm is much faster yet sufficiently accurate. 

Index Terms— Light field, focusing, depth detection, image-
based rendering. 

1. INTRODUCTION 

Before taking a picture with a traditional camera, we need to wait 
for the camera to determine the best focus point. This automatic 
focusing (AF) operation has two restrictions. First, there may be 
many interesting objects at different depths, but it can only choose 
one to focus on. Second, the objects may be moving during the AF 
process. 

However, AF is no longer necessary with plenoptic camera 
and integral photography [1], which use optics array to capture 4D 
light field in one exposure. We can generate images focused at 
arbitrary depths by transforming and integrating the light field [4]. 
Some recent developments demonstrate that compact implementa-
tion of the plenoptic camera can be achieved by embedding the 
optics array in conventional cameras [2], [3]. 

Mathematically, refocusing involves a 2D integration opera-
tion in the 4D spatial domain, which tends to be very slow. Never-
theless, this operation is equivalent to sampling a 2D slice in the 
frequency domain [5], so we can generate various focused photos 
by efficient slicing and FFT. Furthermore, these focused images 
can be filtered and combined into an all-focused image [6]. 

Even with practical devices and fast algorithms, refocusing is 
still a tedious task because traditional algorithms can only provide 
one focused depth. If there are multiple objects at different depths 
in the scene, the users will need to manually select their desired 
focus. 

In this paper we propose a simple but efficient method to 
solve this problem. Instead of finding the depths of different re-
gions in the scene, we extract the depths of different planes at 
which objects are located. In other words, for a scene with objects 

located at (x, y, z)’s, we find the z’s of the objects without solving 
for their x and y positions. Fig. 1 illustrates this idea. As described 
later, these results are useful for many applications. 

The main concept of our algorithm is based on the observa-
tion that the energies of objects at different depths actually lay on 
different 2D slices in the 4D light field spectrum [8]. Therefore, 
the ratio of the weighted energy in high frequencies to the energy 
in low frequencies for these slices provides a cue for detecting the 
object depths. The computation can be further reduced by consi-
dering only two 1D slices for each image plane at different depths. 
Because the depth distributions vary with content, traditional depth 
detection methods are not suitable for all scenarios. Here we re-
formulate the problem and solve it using dynamic programming. 
Our algorithm entirely operates in frequency domain, so it can 
integrate with many applications easily. With some modifications, 
it can operate in the spatial domain as well. The overall complexity 
of the proposed method is small. 

Our proposed method is quite different from traditional AF 
algorithms in two ways. First, AF algorithms only determine a best 
focus value for a specific region, but our algorithm detects all 
depths. Second, AF algorithms are image-based processing and 
usually use some heuristics to measure the sharpness of the image, 
while we have a completed 4D light field so we can obtain the 
depths more precisely. 

The organization of this paper is as follows. The proposed al-
gorithm is given in Section 2. Section 3 presents experimental 
results and two applications: synthetic aperture photography and 
all-focused light field rendering. The conclusions and future work 
are drawn in Section 4. 

2. PROPOSED ALGORITHM 

We say that the focusness of a depth is high if there is some object 
well-focused at the plane of this depth. The basic measurement is 
presented in Section 2.1. However, objects may spread over a wide 
range of depths in a real scene, such as ground or forest. In Section 

 
 
Fig 1. Three objects located at three planes perpendicular to the z 
axis (optical axis of the camera). Our algorithm finds the depths of 
these planes. 
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(a) Global-maximum detection   (b) Global-maximum detection 

 

  
(c) Local-maximum detection    (d) Local-maximum detection 

 

  
(e) Proposed detection    (f) Proposed detection 

 
Fig. 2. Detected depths of the two datasets using (a) (b) global-maximum, (c) (d) local-maximum, and (e) (f) our proposed algo-
rithm. The circles denote the selected depths, the squares are the neighbors of them, and the dotted segments are the partially fo-
cused regions. 

2.2 this problem was solved by modifying the depth detection me-
thod. 

2.1. Measuring the focusness 

Assume there is a 4D light field l captured by the plenoptic camera. 
The depth of the original focal plane is normalized to 1. Note that 
the depth range is harmonically transformed due to optics. Using 
Fast Fourier Transform (FFT), we can obtain the 4D spectrum L: 
 

, , , , , , .u v s tL f f f f l u v s tF  (1)

 
From the Fourier slice photography [5], the spectrum I( ) of 

the synthetic aperture photograph focused at depth  is 
 

, , 1 , 1 , , .x y x y x yI f f L f f f f  (2)

 
When there is some object located at the plane of depth , the 

energy corresponding to the details of this object will mostly fall 
on the slice of its spectrum [8], so the high frequency component 
of this spectrum should be larger than those of the other slices 
which have no object in focus.  

To reduce the computation, only the energy along fx and fy 
axes is taken into account. That is, we extract two 1D spectrums 
from I( fx, fy , ): 
 

, 1 ,0, ,0 ,x x x xI f L f f  

, 0, 1 ,0, ,y y y yI f L f f  
(3)

 
and then calculate the power spectrum P(f, ): 
 

2 2, , , .x yP f I f I f  (4)

 
The direct summation of P(f, ) over the whole spectrum (total 

energy) is not a good measurement of focusness for many reasons. 
First, changing  does not alter the energy of low frequency com-
ponents. Only the details (high frequencies) are lost when the ob-
ject is out of focus. Second, noise and aliasing may dominate the 
energy at high frequencies near the Nyquist rate. 

To alleviate these problems, we use a multi-band processing 
method. The power spectrums P(f, ) is split equally into 8 bands. 
Denote the energy in these 8 bands by E0( ), E1( ),…, E7( ). The 
high bands E1-E6 are emphasized with proper weighting, and their 
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summation are normalized by the lowest band E0. The highest 
band E7 is ignored since it contains mostly noise. Denote the mea-
surement of focusness by G( ): 
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We tried many different settings of wi and found that wi = i 

gives the best results. 

2.2. The discreteness of the depths 

Fig. 2(a) and (b) show the plots of G over  for our two synthetic 
datasets, which are designed for two extreme cases. It is obvious 
that G( ) is high when there is some object at depth . However, 
simple local or global maximum detection may not result in good 
selection. 

Fig. 2(a) shows the G of dataset 1 with completely discrete 
depth distribution. The objects in this space are located at three 
planes with  = 0.93, 0.99, and 1.07. The curve shows three local 
peaks exactly at these points. On the other hand, Fig. 2(b) shows 
the G of dataset 2 with completely continuous depth distribution. 
The objects here spread a range of depths from  = 0.97 to 1.03. 
The G's in this range are globally higher than those in others, but 
there is only one peak. 

These two extreme cases reveal that naïve depth-detection al-
gorithms based solely on local or global maximums would not 
work. That is, if we detect the depth by local maximums, we can 
succeed in the discrete-depth case, but fail to handle the conti-
nuous-depth case. On the contrary, the global maximum detection 
works well in the continuous-depth case, but not in the discrete-
depth one. 

Note that when there is an object at , G( ) is larger than its 
neighbors. In addition, the neighboring G's are also affected by this 
object. This effect should be taken into account. Instead of finding 
global or local maximums, we try to solve the following maxi-
mum-cover problem: 

 
Given depths 1, 2... N, and corresponding G factors G1, 
G2...GN, find K indexes D1, D2, ..., DK such that 
 

1 1
1

( )
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K

D D D
i

G G G  (6)

 
is maximized, under the constraint that the selected Di are 
separated by at least 3;  is between 0 and 1. 
 
The constraint is to ensure that the neighbors of every se-

lected depth will not overlap. In our experiments the  is set to 0.5 
and K is set to 3. This problem can be solved efficiently by dynam-
ic programming. 

3. EXPERIMENTAL RESULTS 

We first perform experiments using the previous synthetic datasets 
so the exact depths of the objects are known. The resolution for 
these dataset is 16×16×256×256. For Eq. (3), spectrum is re-
sampled by a Kaiser-Bessel filter with width 2.5. For Eq. (6), the N 
is set to 21, corresponding to  = 0.90, 0.91, …, 1.10. 

Then we perform similar experiments using real dataset cap-
tured by programmable aperture camera [9]. The depth distribution 
of this dataset is neither completely discrete nor completely conti-
nuous. Instead, it is composed of an object located at =0.97 and a 
region of objects through =1.01 to =1.04. The resolution of this 
dataset is 4×4×256×256. 

 

(a) =0.93 (b) =0.99 (c) =1.07 (d) all-focused 
    

(e) =0.97 (f) =1.00 (g) =1.03 (h) all-focused 
 
Fig. 3. The synthetic aperture photographs and all-focused photos from synthetic datasets.  denotes the detected depths and all-focused 
images are generated from the synthetic aperture photographs without human interaction. 
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3.1. Detection of depths 

The resulted G curves of the two synthetic datasets are shown in 
Fig. 2. The global-maximum method fails when the depth distribu-
tion is discrete, since the object at 1.07 also pulls up G(1.06), as 
shown in Fig. 2(a). On the other hand, the local-maximum method 
fails when the depth distribution is continuous, as shown in Fig. 
2(d). There are objects distributed from 0.97 to 1.03, but only 
G(0.99) is a local peak. For both cases, our proposed algorithm 
works well. Using the detected depths, we can automatically gen-
erate the synthetic aperture photos, as shown in Fig. 3(a-c) and 
3(e-g). The results on real dataset are presented in Fig. 4. Our algo-
rithm successfully selects the depths where objects are located at.  

We can further generate all-focused images [6] using the syn-
thetic aperture photos, as shown in Fig. 3 (d)(h), and Fig. 4 (d). 
The little ghosting effect is due to aliasing. Our implementation is 
more advanced than the previous work in two ways. First, the 
depths are determined automatically instead of exhaustively. 
Therefore no user interaction is required. Second, the previous 
method performs de-convolution in the frequency domain instead 
of iterations in the spatial domain in [6]. Our method can resolve 
the magnification in different focused images easily and the com-
putation is reduced significantly. These differences make our sys-
tem much more efficient. 

3.2. Computational cost 

We consider the analytic complexity first. For each depth, calculat-
ing a single G factor takes O(S), where S is the width (or height) of 
the image. Calculating N factors takes O(NS). Our selection algo-
rithm takes O(NK), so the total time cost is O(NS+NK) and domi-
nated by O(NS). Compared with the FFT for obtaining L, which 
takes O(S4logS), and the IFFT for synthetic aperture photo, which 
takes O(S2logS), the complexity of our algorithm is negligible. 

In our experiment, 4D FFT takes 10 seconds, but it can be 
pre-calculated only once. For some scenario where the 4D FFT is 
redundant or undesirable, there is a different approach to evaluate 
Eq. (3). In Ix and Iy, two of the four dimensions are simply DC 
components. These DC components can be easily extracted by 
projection. Therefore, we can generate two 2D signals ius, ivt by 
projecting the 4D signal along v,t and u,s axes respectively, and 
then perform 2D FFT on ius and ivt to obtain Ix and Iy.  

Our experiments were performed on a PC with Pentium-4 
3GHz CPU and 1GB RAM. Generating each refocused image 
takes 1 second and the all-focused image takes 3 seconds. Our 
depth detection only takes 0.25 seconds. 

4. CONCLUSIONS AND FUTURE WORK 

In this paper we have proposed a method to detect all object depths 
in the light field. The focusness is measured by the weighted sum-
mation of energy in different frequency bands, and the detection 
problem is reformulated into a maximum-cover problem. The ex-
perimental results show that our algorithm is fast, accurate, and 
useful for many applications, such as digital refocusing and all-
focused rendering. Compared with other operations in the system, 
the additional overhead of our method is negligible. 

Our algorithm can be applied to many other applications. For 
example, in multi-camera matting, moving objects must be refo-
cused continuously and automatically [7]. Another one is depth 
quantization. In [8] a method is proposed to quantize the depth 
uniformly in disparity. However, many depths may be vacant, so 

non-uniform quantization will give better results. Also for per-
pixel depth estimation, our result can reduce the search space and 
thus speed up the estimation. 
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(a) =0.97 (b) =1.01 
  

(c) =1.04 (d) all-focused 
 
Fig. 4. The synthetic aperture photographs and the all-focused 
image from the real dataset.  
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