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ABSTRACT

In this paper, we propose an adaptive algorithm for sampling

and reconstructing two-dimensional fields using mobile sen-

sors that can move to designated locations to collect measure-

ments. During each step, the algorithm selects the most de-

sirable sampling sites from a pool of site candidates based on

a Bayesian framework. Simulations show that the algorithm

works effectively.

Index Terms— Bayes procedures, Adaptive systems, De-

launay triangulation, Spline functions

1. INTRODUCTION

In this paper, we consider sampling two-dimensional fields

using mobile sensors that can move to prescribed locations to

collect samples, e.g. the Networked InfoMechanical System

(NIMS) [1]. Equipped with mobility, a few sensors can carry

out the task of collecting measurements within their patrol

area, which would otherwise require a large number of static

sensors. Moreover, mobile sensors are especially suited for

observing heterogeneous and slowly time-varying phenom-

ena owing to their ability to sample the field at arbitrary and

adjustable density.

Traditional algorithms often begin with a panorama, then

proceed to compress the complete set of data under some dis-

tortion constraint. For instance, image compression and the

approach in [2] fall in this category. Here, the process is re-

versed. Unless the source is exhaustively sampled, which is

prohibitively expensive, we possess only partial knowledge

about the field. Hence, it is more appropriate to consider the

probability of satisfying the fidelity constraint given the in-

complete information at hand. New levels of confidence on

achieving the fidelity goal can be gained by collecting more

samples. Herein lies the compromise between our fidelity

goal and the resource consumption. Furthermore, the hetero-

geneous nature of the field presents us the opportunity (chal-

lenge) of reaching a high confidence level efficiently.

In a mobile sampling system, major energy expenditure

often results from sensor movement and sample collection.
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Hence, the number of samples provides a first-order indica-

tion of energy expense. On the other hand, when the field

varies slowly in time, using fewer samples to estimate a field

snapshot leads to a faster and more accurate system. Hence,

the goal here is to minimize the number of samples under a

certain fidelity constraint.

In a sense, the sequential sampling process can be viewed

as an optimal experimental design [3], in which the input vari-

ables (new sampling sites) of a series of tests (sample collec-

tion) are adjusted such that the system response (the field) is

observed efficiently. [4] explores this idea in choosing opti-

mal trajectories of moving sensors based on the Fisher infor-

mation matrix. A sequential method for estimating disconti-

nuities in curves and surfaces is discussed in [5]. However,

these schemes are not readily applicable to distributed field

reconstruction under fidelity constraints. [1] and [6] repre-

sent preliminary efforts on using mobile sensors to adaptively

sample distributed phenomena. Recently, [7, 8] show that

adaptive and nonadaptive methods result in the same error

convergence rate for certain classes of functions. Yet, we still

consider adaptive methods a competitive approach for several

reasons. First, the methods are evaluated on a minimax crite-

rion in [7, 8]. Second, even with the same convergence rate,

the scaling factor may be different. Third, algorithm com-

plexity is important too.

The rest of the paper is organized as follows. The adaptive

algorithm is presented in Section 2, and simulation results are

displayed in Section 3. Section 4 concludes the paper.

2. ADAPTIVE SAMPLING ALGORITHM

The block diagram of our adaptive algorithm is depicted in

Fig. 1. We assume that a single mobile sensor is used. A pool

of sampling candidates is maintained and updated each time

Fig. 1. The block diagram of the adaptive sampling algorithm.
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a new sampling point is picked. A number of sites are picked

from the pool based on a Bayesian framework. The sensor

then moves to collect samples at these locations, and recon-

structs the field. The probability of the newly reconstructed

field satisfying the fidelity constraint is updated. The algo-

rithm iterates until the confidence of meeting the fidelity con-

straint is high enough or the number of samples has reached

a prescribed value.

2.1. Sampling Candidates

Given a set of points S, a Delaunay tessellation DT(S) is

obtained by connecting any two points p, q ∈ S with a line

segment if there exists a circle that passes through p, q and

contains no other points of S. DT(S) is the graph-theoretic

dual of V(S), the Voronoi diagram with respect to S [9].

Denoting by Sk the set of existing sampling sites at itera-

tion k and Nk the size of Sk, we construct DT(Sk), and use

as site candidates the centers of Delaunay cells’ circumcir-

cles (Fig. 2). This choice has some nice properties. First, our

scheme follows the maximin design [10] by placing potential

sites at the centers of sampling gaps. Second, the total num-

ber of Delaunay cells is no more than (2Nk −5). Third, there

are parallel algorithms that run in O(Nk log Nk) time finding

DT(Sk) [9]. Moreover, incremental schemes that update the

pool in the neighborhoods of newly added sites exist.

For the Delaunay cell corresponding to the mth candidate

in DT(Sk), we define Ok
m as its set of vertices, i.e. the sam-

pling points that are closest to the mth candidate. Denoting

by Vk
j the Voronoi cell corresponding to the jth sampling site

during iteration k, then the mth candidate at iteration k is also

the common vertex of Voronoi cells Vk
j , j ∈ Ok

m, which can

be easily seen from Fig. 2.

2.2. Adaptive Sample Selection

2.2.1. Sample Selection

We consider the following distortion requirement:

max
(x,y)∈Dom

|f(x, y) − s(x, y)| ≤ Dmax, (1)

where Dom is the sampling domain, and f(x, y) and s(x, y)
are the actual and reconstructed fields. We impose the error

requirements on each Voronoi cell (Vk
i ), and define:

Uk
i : Distortion requirement is unsatisfied in Vk

i . (2)

(1) is satisfied if (2) is false for all Voronoi cells.

When a sample is collected, besides being used to obtain

a new field estimation, this sample also reveals important in-

formation on how well the previous estimation approximates

f(x, y) in the vicinity of sampling site. We can define a test

T k
i for the sample taken at (xi, yi) during iteration k:

T k
i =

{
G if |sk(xi, yi) − sk−1(xi, yi)| > ε,

L otherwise,

where sk(x, y) and sk−1(x, y) are estimations at iteration k
and k− 1 respectively, and ε is set according to Dmax. Group

the samples collected during one iteration, and accumulate all

tests up to k. We have

T k = {T k
1 , · · · , T k

n}, Zk = {T k, T k−1, · · · , T 1},
where n is the number of samples taken in one iteration.

Due to insufficient knowledge about the field, we are gen-

erally not certain about whether the fidelity constraint is satis-

fied in Vk
i . However, we can define P (Uk

i |Zk), the probabil-

ity of Uk
i given all past tests. To continue sampling, new data

sites need to be picked from the candidate pool. Since each

selected site creates a new Voronoi cell at the next iteration, it

is natural to choose the site with the maximum P (Uk+1
i |Zk)

among all candidates. Supposing the cell Vk+1
i corresponds

to candidate m at iteration k, then Vk+1
i overlaps with Vk

j ,

j ∈ Ok
m, (recall that m is the common vertex of Vk

j , j ∈ Ok
m).

Therefore, a weighted sum is used to estimate this probability:

P (Uk+1
i |Zk) =

∑
j∈Ok

m

μjP (Uk
j |Zk). (3)

The weight μj characterizes the influence of Vk
j on Vk+1

i :

∑
j∈Ok

m

μj = 1 and μj ∝ (dj1 + dj2)/rj . (4)

in which dj1, dj2, and rj are defined as in Fig. 2.

Fig. 2. Delaunay cells are enclosed by dashed lines. Solid

lines are boundaries of Voronoi cells.

Once data sites are chosen, samples are collected, and the

field is estimated. It remains to compute P (Uk+1
i |Zk+1) by

assimilating the information revealed from T k+1.

2.2.2. Probability Update

Based on the Bayesian framework, we have:

P (Uk+1
i |Zk+1) = P (Uk+1

i |T k+1, Zk)

=
P (T k+1|Zk, Uk+1

i )
P (T k+1|Zk)

P (Uk+1
i |Zk)

(5)

It is difficult to compute the exact value of each quantity in (5).

Instead, we design schemes that approximate the procedure.
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P (Uk+1
i |Zk) from (3) is used if Vk+1

i corresponds to a

sample collected at iteration k+1. Otherwise P (Uk+1
i |Zk) =

P (Uk
j |Zk), where Vk+1

i contains the same data site as Vk
j .

Literally, P (T k+1|Zk, Uk+1
i ) is the probability of T k+1

given Zk and the knowledge that the fidelity constraint is un-

satisfied in Vk+1
i . If Vk+1

i is far away from the sites sam-

pled at iteration k + 1, the status of Vk+1
i exerts little influ-

ence on the outcome of T k+1. Hence, P (T k+1|Zk, Uk+1
i ) =

P (T k+1|Zk), and P (Uk+1
i |Zk+1) = P (Uk+1

i |Zk), which

implies that T k+1 sheds no information on Voronoi cells far

away from the testing sites. Now, assume Vk+1
i is near a sam-

ple collected during iteration k + 1 at candidate m, and T k+1
m

is the corresponding test. Fixing the values of the rest tests in

T k+1, we examine the effect of Uk+1
i on T k+1

m . For simplic-

ity, we keep only T k+1
m in writing T k+1. If ε is properly set

according to Dmax, we expect

P (T k+1
m = G|Zk, Uk+1

i ) > P (T k+1
m = G|Zk);

P (T k+1
m = L|Zk, Uk+1

i ) < P (T k+1
m = L|Zk).

We find the following scheme effective. Assuming m the

candidate corresponding to T k+1
m , if Vk+1

i is created by m,

P (Uk+1
i |Zk+1) =

{[
P (Uk+1

i |Zk)
]κg

if T k+1
m = G;[

P (Uk+1
i |Zk)

]κl
else.

(6)

If the data site of Vk+1
i is inherited from Vk

j , j ∈ Ok
m,

P (Uk+1
i |Zk+1) =

{[
P (Uk

j |Zk)
]αj

if T k+1
m = G;[

P (Uk
j |Zk)

]βj
else,

(7)

where αj = κ
μj
g and βj = κ

μj

l . Otherwise,

P (Uk+1
i |Zk+1) = P (Uk

j |Zk). (8)

Here, κg < 1, κl > 1 are parameters properly set according to

ε and Dmax. Using the same κg and κl for all tests implicitly

assumes that cells are uniform. Thus a compensating factor is

used to take into account cell area (Δi) and field roughness.

hi =

[(
∂2s

∂x2

)2

+ 2
(

∂2s

∂x∂y

)2

+
(

∂2s

∂y2

)2
]

Δi.

2.3. Algorithm Implementation

Starting with a set of sampling sites and the initial field esti-

mation. Set k = 1, and execute the following steps.

1. Compute P (Uk+1
i |Zk) for all candidates using (3).

2. Calculate hi and Cs
i = hiP (Uk+1

i |Zk). Pick N candi-

dates that maximizes Ci.

3. Collect samples at selected sites and reconstruct the

field. Evaluate T k+1, and update probabilities using (6),

(7), and (8).

4. If P (Uk+1
i |Zk+1), i = 1, · · · , Nk+1, reach required

values or enough samples have been collected, exit.

Otherwise, k = k + 1, and go to step 1.

When multiple samples are collected during one iteration,

the candidate pool and Ci is updated each time a data site is

selected to avoid picking two sites too close to one another.

We ignore noise in this paper, so the thin plate spline [11]

is used to interpolate the field. If noise is to be considered,

approximation, for instance, the smoothing spline [12], must

be used for field reconstruction.

When P (Uk
i |Zk) and field variation appear the same ev-

erywhere, the algorithm degenerates to a uniform sampling

scheme that follows the maximin design to fill the space ef-

ficiently. On the other hand, the probability P (Uk
i |Zk) will

monotonically decrease when the tests in the neighborhood

repeatedly result in L. Therefore, our algorithm is stable in

that it will not keep sampling a region after the reconstructed

field has reached the fidelity constraint.

In addition, we often have some knowledge about the field

smoothness so that some cutoff rate can be specified as an up-

per bound on the spatial sampling density. This can result in

considerable saving because otherwise we have to oversample

in each cell to reach a high level of confidence on fidelity.

3. SIMULATIONS

We first describe a uniform sampling method that our adaptive

algorithm will be compared with. A pool of sampling candi-

dates is maintained as in section 2.1. At each step, the candi-

date with the maximum distance to existing samples is picked

as the new site. This method follows the maximin design and

tends to spread the sampling sites uniformly in space.

3.1. Sunlight field

The first simulation is based on the sunlight field under the

forest canopy, which has long interested biologists due to their

important role in plant growth [13]. The true sunlight field

captured with a digital camera at the UCLA sunset canyon

is depicted in Fig. 3(a). Field estimations reconstructed from

(a) The true field (b) Uniform sampling (c) Adaptive algorithm

Fig. 3. The true and reconstructed fields.

102 samples collected using uniform and adaptive sampling

methods are shown in Fig. 3(b) and 3(c). While Fig. 3(c)

reasonably approximates the true field, Fig. 3(b) smears the

cut in the corner badly. The sample distribution in Fig. 4 ex-

plains the difference: the uniform method distributes samples
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uniformly in space; in contrast, the adaptive method focuses

most samples in the region where field variation is high.

(a) Uniform sampling (b) Adaptive algorithm

Fig. 4. Distribution of sampling sites.

3.2. Piecewise-Constant Field

The next simulation is conducted on a piecewise-constant field,

which consists of two constant regions separated by a curvy

edge as depicted in Fig. 5(a), which also shows the distribu-

tion of sampling sites based on the adaptive method. Fig. 5(b)

plots the reconstructed field. As we can see from the artifi-

cial ripples in Fig. 5(b) that the thin plate spline interpola-

tion is not suited for reconstructing such piecewise constant

fields with sharp edges. However, the sample distribution in

Fig. 5(a) shows the remarkable ability of the adaptive algo-

rithm to detect and follow the edge.

edge

(a) Sample distribution (b) Reconstructed field

Fig. 5. Adaptively sampling a piecewise-constant field.

4. CONCLUSION

In this paper, we developed an algorithm for adaptively sam-

pling and reconstructing two dimensional distributed field,

and simulations show that the method works effectively. The

routing cost of mobile sensors is not considered in this pa-

per, but it can enter the scheme in various ways. A route

design step can be inserted before the sampling takes place.

Alternatively, we can incorporate the routing into our sample-

selection cost function such that the chance of selecting dis-

tant sites in the same iteration is reduced. Although our scheme

is designed for individual mobile sensors, it can be used in

static sensor networks, if local reconstruction methods are

used. For example, a Delaunay triangulation can be easily

constructed out of DT(S). We can then treat each Delaunay

triangle as a local cluster, and fit a two-dimensional piecewise

linear function in it. In addition, there are alternative ways to

approximate the Bayesian procedure, and we expect that other

iterative schemes can be inspired from the same framework.
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