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ABSTRACT 

In this paper, we present a new image denoising algorithm. 
We assume a mixture of bivariate circular symmetric 
Laplacian probability density functions (pdfs) where for 
each wavelet coefficients may have different local 
parameter. This pdf characterizes simultaneously 1) the 
heavy-tailed nature, 2) the interscale dependencies of the 
wavelet coefficients and also 3) the empirically observed 
correlation between the coefficient amplitudes. We employ 
this local bivariate mixture model to derive a Bayesian 
image denoising technique. This proposed pdf, potentially 
can fits better the statistical properties of the wavelet 
coefficients than several other existing models. Our 
simulation results reveal that the proposed denoising 
method is among the best reported in the literature. This is 
justified since the accuracy of the employed distribution for 
noise-free data determines the denoising performance. 

Index Terms— circular symmetric Laplacian pdf, 
MAP estimator, mixture model, complex wavelet transforms

1. INTRODUCTION 

The wavelet based image denoising is often performed 
using Bayesian techniques for estimation of clean 
coefficients from the noisy data observation [1]-[5]. For 
example using the maximum a posteriori (MAP) estimator, 
the solution requires a priori knowledge about the 
distribution of the wavelet coefficients. For a given 
distribution, a particular estimator could be obtained (called 
shrinkage function). For example, the classical soft 
thresholding is obtained by a Laplacian pdf [2].  

The clustering property of the wavelet transforms state 
that if a particular wavelet coefficient is large/small, then 
the adjacent coefficients are likely large/small too. This 
local property is employed in [3] using a Gaussian pdf with 
local variance. Another property of the wavelet transforms 
is the compression that is the wavelet coefficients of real-
world signals tend to be sparse. In order to take this 
property into account, in [4] a mixture distribution is 
proposed. The third property of the wavelet transforms is 
the persistence, i.e., the large/small values of wavelet 

coefficients tend to propagate across scales. This property 
means that the bivariate pdfs, such as circular symmetric 
Laplacian pdf [2], which exploit the dependency between 
coefficients, better model the statistical properties of 
wavelet coefficients in comparison with univariate pdfs. 
(Since the univariate pdfs assume that coefficients in 
adjacent scales are independent.) In this paper, we use a 
mixture of two circular symmetric Laplacian pdfs with local 
parameters to describe all the above properties. In contrast 
in [6] a mixture of univariate Laplace pdfs with local 
parameters is employed to derive the LapMixShrinkL A 
bivariate mixture model without local parameters is used for 
developing a denoising algorithm in [7]. This paper 
combines the ideas in [6] and [7]. 

The rest of this paper is organized as follows: A brief 
review on Bayesian denoising is presented in Section 2. We 
obtain a shrinkage function namely, CShrinkL, using the 
circular symmetric Laplacian pdf with local variance [2] in 
Section 2.1. In Section 2.2 the bivariate mixture pdf with 
local parameters is introduced. In Section 2.3, we obtain the 
shrinkage function derived from the proposed local circular 
symmetric Laplacian mixture namely, CsLapMixShrinkL. 
In Section 3, we use the proposed pdf for wavelet-based 
denoising of several images corrupted with additive 
Gaussian noise in various noise levels. The simulation 
results show that our algorithm achieves better performance 
visually and in terms of peak-signal-to-noise-ratio (PSNR) 
compared with several methods: 1) the hard thresholding 
(HT) [1], 2) CShrinkL [2], 3) alpha-stable based Bayesian 
processor (WIN-SAR) [5], 4) LapMixShrinkL [6] and  5) 
CsLapMixShrink [7]. Finally the summarizing remarks are 
given in Section 4. 

2. BAYESIAN DENOISING 

Denoising can significantly improve the visual quality of an 
image. The main sources of noise are arising from the 
electronic hardware (shot noise) and from the channels 
during transmission (thermal noise). Most noise sources are 
modeled by additive white Gaussian noise (AWGN).  

Suppose we observe a noisy wavelet coefficient )(ky , 
where ))(),(()( 21 kykyky . Using a (complex) wavelet 
transform [2] with subsampeling across scales, we can write 
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Fig. 1. Illustration of neighborhood [2]. 

)()()( knkwky , where ))(),(()( 21 kwkwkw  represents 
the noise free image and ),( 21 nnn  represents the 
AWGN. As illustrated in Fig. 1, w2(k) represents the parent 
of w1(k) (w2 is the wavelet coefficient at the same spatial 
position as w1, and at the next coarser scale). The objective 
is to estimate the noise-free coefficient, )(kw . Using MAP 
criteria, the estimator is de ned by: 

 .)(|)(maxarg)(ˆ
)(|)()(

kykwkw p kykwkw
 (1) 

After some manipulations, this equation is written as:  

 .)()()(maxarg)(ˆ
)()(

kwkwkykw pp kwnkw
  (2) 

Assuming that the noise samples n1, n2 are independent 
white zero-mean Gaussian with variance 2

n , we obtain:  
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By setting the partial derivative to zero with respect to 
)(ˆ kwi  for i=1,2, we obtain: 
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ii ,   for  i=1,2.  (4)  

2.1. CShrinkL function 

The solution of (4) depends on the pdf of noise-free wavelet 
coefficients. In [2], the following circular symmetric 
Laplacian pdf with local variance is proposed in order to 
describe that w1(k) and w2(k) are uncorrelated while are 
dependent: 
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In this case, denoteing )(ˆ kwi  as the MAP estimate of 
)(kwi  for i=1,2, we obtain following bivariate shrinkage 

function:  
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where ),0max()( aa . We define CShrinkL function as: 
)(),(CShrinkL kkg )()()(1: kgkgk , 

where )(),()( 21 kgkgkg . We rewrite (6) as: 

 )(3),(CShrinkL)(ˆ 2 kkykw n .  (7) 
To implement this estimator, we need to know n  and 
)(k . For each data point, )(ky , an estimate of )(k  is 

formed based on a local neighborhood )(k  as illustrated 

in Fig. 1. We use a square window )(k  centered at )(ky . 
Then we obtain an empirical estimate for )(k  as: 
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where M is the number of coefficients in )(k . 

2.2. Bivariate mixture models with local parameters 

We assume a pdf as a mixture of two circular symmetric 
Laplacian pdfs with local parameters in order to model the 
distribution of wavelet coe cients of images as follows: 
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where ],1,0[)(ka  )(1 k and )(2 k  are the mixture model 
parameters. We see that this pdf represents two uncorrelated 
and independent random variables. Interestingly, because 
this pdf is mixture, it can better model the heavy-tailed 
property of wavelet coefficients than single circular 
symmetric Laplacian distribution.  

To characterize the parameters in (9) it is necessary to 
have the parameters ),(1 k )(2 k  and )(ka . For this 
mixture model, we use a local version of expectation 
maximization (EM) algorithm, which is an iterative 
numerical algorithm, to estimate these parameters. This 
iterative algorithm has two steps. If S(k,m) denotes variable 
S at point k for iteration m and we start the algorithm with 
m=0 (first iteration), assuming the observed data )(kw , the 
E-step calculates the responsibility factors: 
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The M-step updates the parameters ),(),,( 1 mkmka  
and ),(2 mk . ),( mka  is computed by: 
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Fig. 2. Sample space based on binary random variable v. 

Table I. Summary of the proposed algorithm. 

Step 1: Signal transformation of noisy observation 

Step 2: Initialization of ),(),,(),,( 21 mkamkmk  

Step 3: Calculating of )),((),),(( 21 mkwpmkwp  

Step 3: Calculating of ),(),,( 21 mkrmkr  from (10) 

Step 4: Calculating of  )1,( mka  from (11) and 

)1,(),1,( 21 mkmk  from (12) 
Step 5: Returning to Step 3 to converge of the parameters  
Step 6: Using the obtained parameter in (17) for 

calculating the denoised coefficients  
Step 7: Inverse signal transformation   

 
)(
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where M is the number of coefficients in square window 
)(k  centered at )(kw  as illustrated in Fig. 1 and the 

parameters ),,(1 mk ),(2 mk  are computed by: 
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With this new parameters we calculate )1),(( mkwpi  
for i=1,2. Using (11) we find )1,( mkri  for i=1,2 by (10) 
and iterate these steps to converge of the parameters. For 
many mixture models (such as y  in next section) a closed 
form for computing i(k) doesn’t appear. In these cases, the 
following formulas produced from bivariate Gaussian 
mixture pdf can be used to estimate i(k): 
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2.3. CSLapMixShrink function 

This section describes a non-linear shrinkage function for 
wavelet-based denoising that is derived by assuming that 
the pdf of the noise-free wavelet coefficients are given by 
(9). According to Fig. 2, using a binary sample space, we 
can obtain an estimator for )(kw  by combining the 
estimates of w  under H0 and H1 as follows: 
 )(ˆ)()(ˆ)()(ˆ

211 kwkypkwkypkw aa , (14) 
where )(:)(|0 kypkyHp a and )(:)(| 11 kypkyHp a  
are respectively the probability of being in H0 and H1, when 

)(ky  has been observed. For i=1,2 the expression )(ˆ kwi  is 
an estimate of )(kw  based on the assumption that )(kw  
was generated under Hi-1. If Hi-1 states that our proposed pdf 
is circular symmetric Laplacian pdf with variance )(ki , 

then we use (7) to get )(ˆ kwi , i.e.: 
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We use the following Bayes’ rule in order to calculate 
))(( kypa  and ))((1 kyp a : 
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where ))((:|)( 1 kygHkyp ii  denotes the pdf of )(ky  
according to the assumption that )(kw  was generated under 
Hi-1. Because )(ky  is the sum of )(kw  and the independent 
Gaussian noise, the pdf of )(ky  is the 2d convolution of the 
pdf of )(kw  and the bivariate Gaussian pdf. After some 
simplification, we can estimate this pdf as follows: 
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where )/21)(exp()(erfcx
0

2 2x t dtexx . Our numerical 

experiments show that for 10M  the approximation error 
is less than 1%. 

Defining )()()1( 12 kyagkygaR , we obtain:  
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The algorithm is summarized in Table I.  

3. EXPERIMENTAL RESULTS  

In this section, we demonstrate the performance of the 
proposed algorithm by examples using CSLapMixShrinkL 
and compare the results with other methods such as HT [1], 
WIN-SAR [5], CShrinkL [2], LapMixShrinkL [6], CSLap-
MixShrink [7].  
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Table II. PSNR in dB for Several Denoising Methods. 

n HT 
WIN- 
SAR 

CS-
ShrinkL 

LapMix-  
ShrinkL 

CSLapMi
-xShrink 

CSLapMi
-xShrinkL 

Lena       
10 34.23 34.33 35.34 35.35 34.99  35.30 
15 32.60 32.74 33.67 ------ 33.34  33.81 
20 31.30 31.52 32.40 32.31 32.11  32.55 
25 30.23 30.57 31.40 ------ 31.09  31.61 
30 29.40 29.89 30.54 30.58 30.34  30.94 

Boat        
10 32.40 32.85 33.10 33.28 33.03  33.23 
15 30.50 30.87 31.36 ------ 31.27  31.42 
20 29.27 29.65 30.08 29.88 30.04  30.19 
25 28.23 28.64 29.06 ------ 28.96  29.19 
30 27.44 27.92 28.31 28.03  28.14  28.47 

 
Fig. 3. From top:  CSLapMixShrink function, denoised image 
with CShrinkL, denoised image with soft thresholding and 
denoised image with our method (CSLapMixShrinkL). 

Fig. 3 illustrates CSLapMixShrink function and 
denoised images produced from CSLapMixShrink, soft 
thresholding and CSLapMixShrinkL for a part of 512×512 
grayscal Barbara image corrupted with additive Gaussian 
noise ( n=20). We can also see a comparison between our 
algorithm with other methods at different additive Gaussian 
noise levels n=10, 15, 20, 25, 30 for two 512×512 
grayscale images, namely, Lena and Boat, with other 
methods in Table II where the best PSNR performance 
among algorithms is highlighted by bold number.  

4. CONCLUSION AND DISCUSSIONS 

In this paper we used a mixture of circular symmetric 
Laplacian pdfs for noise-free wavelet coefficients and 
derived CsLapMixShrinkL function for image denoising. 
Experiment results show that this algorithm mostly 

outperforms several existing effective techniques in the 
literature. In terms of PSNR up to 0.5 dB improvement is 
obtained compared with existing algorithms. As seen from 
these results, our algorithm outperforms the others in most 
cases. Visually, the denoised image using the proposed 
method is more similar to the noise-free image than using 
other algorithms.  For example, the CShrinkL [2] produces 
images that are softer than original images, i.e., the details 
of the images are blurred. Since, CSLapMixShrink [7] is not 
a local algorithm the denoised image using this method has 
more visual artifacts. In [6], it is discussed that some other 
methods are more effective than LapMixShrinkL for 
crowded images. In contrast the proposed algorithm also 
performs well for crowded images. 

Instead of this pdf, one may use other mixture pdfs 
such as a mixture of bivariate Cauchy pdfs with local 
parameters in order to derive other shrinkage functions. 
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