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ABSTRACT

Simulation and analysis of human walking motion has applications
in surveillance and healthcare. In this paper we discuss an approach
for modeling human walking motion using a mechanical model in
the form of a kinematic chain consisting of rigid links and revolute
joints. Our goal is to discriminate different types of walking motions
using information such as joint torque and angle sequences extracted
from the model. The angle sequences are initially extracted using
3D geometry. From these angle sequences we extract the torque se-
quences using a recursive Newton Euler inverse dynamics algorithm.
Time series models and Dynamic Time Warping of the torque and
angle sequences are used to characterize and discriminate different
walking patterns. A forward dynamics algorithm is also presented
for synthesizing different walking sequences like limping from a
normal walking torque sequence.

Index Terms— Human walking, inverse dynamics, forward dy-
namics, ARMA, dynamic time warping

1. INTRODUCTION

Walking is one of the most common activities performed by humans.
But the process of analyzing and simulating human walking motion
is one of the most difficult problems to handle. Analysis of the prob-
lem has been done using various techniques and has been utilized
for human recognition, abnormality detection and also medical pur-
poses.

Human gait or walking motion can provide very rich and de-
tailed information. Just by looking at the walking motion of a per-
son we can detect whether he or she has some physical disability or
even tired. In most of the cases we can also infer the person’s gen-
der. If the person is someone we know we can recognize him or her
by observing the way he or she walks. Certainly all of these pieces
of information are encoded in the walking patterns of the humans.
However we can also say that they are not included in a specific
frame, but we have to look at the dynamics of the walking process.
We might not be able to say that a person is wounded or not from
a picture, but if we are presented with a video sequence of a walk-
ing person, we can very easily infer about the pieces of information
mentioned above.

In this work we attempt to capture the variations in human walk-
ing due to different loadings of the human body. By looking at a
walking person we can usually infer whether he or she is carrying
a backpack or not. The loading conditions can be carrying a heavy
backpack or having something strapped to the chest or leg. We want
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to analyze the effect of these loadings on human walking through the
use of a dynamic model for human locomotion.

The problem has been divided into two subproblems, namely

1. Inverse Dynamics to get the joint torques: The inverse dy-
namics problem [1] is one of solving the joint torques from
the joint angles along with their first and second order deriva-
tives. In our work we have used the Newton-Euler recursive
algorithm [1] for torque calculation.

2. Forward Dynamics: This problem [1] estimates the joint an-
gles from joint torques. It is done by representing the human
body motion in the form of a differential equation and then
numerically integrating the equation.

To the best of our knowledge discriminating human walking patterns
using the angle and torque is a new work and has not been reported
before.

Simulation and analysis of human walking motion has been a
subject of interest in many fields like computer animation, biome-
chanics, robotics and computer vision. Specially in computer an-
imation, human walking motion generation is an area where a lot
of work has been done [2]. [4][3] has developed models which are
physically realistic. Physically realistic models take into account
all the different physical constraints like gravity and body muscle
torques. The alternative to this is the use of kinematic methods
[5][6].[7] have combined the methods. These methods use some
biomechanical knowledge and some previously collected gait data
for the generalization purpose.

In the robotics community bipedal locomotion is a very popular
topic and we can find several works on the same. In general a biped
can be represented as an inverted pendulum system. This system
undergoes a constrained motion due to the interaction of the stance
leg and the ground [8]. In [9] Chew and Pratt have explored the
performance of their algorithms under different load variations.

Computer vision mainly uses human gait for recognition of hu-
mans. There are two types of methods, appearance based and model
based. Appearance based models can be deterministic [10] or stochas-
tic using a hidden Markov Model (HMM) [11].

The organization of the paper is as follows. Section 2 presents
the human body and motion models used in our work. The overall
system is described in section 3 along with inverse and forward dy-
namics calculation systems. A brief description of angle and torque
vector modeling is provided in section 4. Section 5 presents the re-
sults of our experiments. Finally section 6 presents the conclusions.

2. HUMAN BODY MODEL AND MOTION MODEL

We have modeled the human body as a kinematic chain of rigid links.
This type of a model has been used earlier in [12], but for a different
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purpose. They have used the model for capturing and representa-
tion of human motion from video sequences. We have used a similar
model, but it has been used for analyzing and simulating human mo-
tion. There are in all eleven links. The link structure is shown in
figure 1. All the links are assumed to be perfectly rigid with zero
diameter. The center of mass of a link is at the center of its length.
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Fig. 1. Kinematic linked structure

The junctions of the links are connected in general by spherical
joints which can rotate about all the three axes i.e. have 3 - degrees
of freedom. Hence in general the total number of degrees of freedom
with eleven joints is thirty three. In our work we have constrained
the motion of the model in the sagittal plane i.e. the plane passing
through the center line of a human body, dividing the body symmet-
rically into two equal halves. Hence the joints are modeled as revo-
lute joints having their axis of rotation in the plane perpendicular to
the sagittal plane.

The total number of degrees of freedom for the body model is
then ten, and all the DOF’s correspond to a revolute joint. We have
added another degree of freedom to the stance leg where the leg rests
on the ground. We have modeled the body ground joint as a revolute
joint and torque is applied to this joint to move the body forward. All
the above joints are actuated joints and appropriate torque is applied
to the joints to generate the human motion.

Figure 2 shows the complete human model used in our work
along with the ground connection modeled as a revolute joint

to each of the revolute joints)
(We have attached a coordinate system
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Fig. 2. Human model with ground connection.

We have adopted the following human motion model which has
been used in many previous works [12]. In general, human motion
can be described by three states and the body goes through all these
states periodically. As the states are visited periodically, the human
gait is generated. The states are

Double Support In this state the body is supported by both the legs

Right Support In this state the body is supported by the right leg
(support leg) only and the left leg is the swing leg

Left Support In this state the body is supported by the left leg (sup-
port leg) only and the right leg is the swing leg

We assume that the time duration of the double support phase is
very small and the transition from the left support to the right support
or from the right support to the left support is instantaneous. In fact
the simulation of this system alternates between the two phases.

3. THE INVERSE AND FORWARD DYNAMICS
MODELING

A block diagram of the system is shown in figure 3. Initially, the
joint angle data is manually extracted from a video sequence by hand
marking the points of interest in the video frames or as in our case,
the marker data collected in the Stanford Biomotion Laboratory is
used to locate the joint positions of a human body. The points of
interest for our case are the body joints. Since the motion of the
model joints has been confined to one dimension only, the angles that
are calculated are on the sagittal plane. As a result of this calculation
for each frame, we capture the posture of the human model.

Computation of the joint
torques using Newton Euler
recursive inverse dynamics

algorithm

Controller
to generate the human motion.
Forward dynamics simulation

Model Disturbance

human figure
Video showing a walking 

Joint angle measurements

Fig. 3. System block diagram

The process of calculating the joint angles is represented by the
block shown as ”Joint Angle Measurement”. These joint angle mea-
surements are then fed to the inverse dynamics calculator for each
frame. For the calculation of the joint torques we use the Newton
Euler recursive inverse dynamics algorithm [1]. This block finds
joint torques that are required to produce the desired human like mo-
tion. As mentioned earlier, all the joints are actuated in this model.
The output is obtained in the form of a 11-dimensional torque vec-
tor. As a result of the computations mentioned above, we obtain a
sequence of angle and torque vectors for a given video or marker
data sequence.

In the next stage of the system these torque and angle sequence
of vectors are used to discriminate the different walking patterns of
humans by using autoregressive and moving average modeling [13]
and Dynamic Time Warping (DTW)[13]. Using these techniques we
discriminate the different walking patterns.

3.1. Inverse Dynamics

The inverse dynamics is calculated using the iterative Newton-Euler
dynamic formulation which calculates the torque required to gen-
erate the given motion of the human model. The inputs to this al-
gorithm are the position, velocity and acceleration (Θ, Θ̇, Θ̈) of the
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joint angles. The angle vectors are obtained as mentioned in the
previous section. The velocity and acceleration vectors are obtained
by taking finite differences of the angle vectors once and twice re-
spectively. Along with these, we also need the knowledge of the
kinematics and the mass distribution of the model for completing
the calculations. To make the model authentic and realistic we have
used the general human body characteristics [14] [15].

3.2. Forward Dynamics

For the forward dynamics [1] it is convenient to express the equation
of motion of the model in a state space form that often hides the
minute details of the system, but shows the underlying structure of
the equation. The dynamic equation can be written as,

τ = M(Θ)Θ̈ + V (Θ, Θ̇) + G(Θ) (1)

where M(Θ) is the mass matrix of the chain, V (Θ, Θ̇) is a vec-
tor of centrifugal and Coriolis terms and G(Θ) is a vector of gravity
terms. Each element of M(Θ) and G(Θ) is a complex function of

Θ, while each element of V (Θ, Θ̇) is a complex function of both Θ

and Θ̇. To compute the forward dynamics, we use the inverse dy-
namics algorithm to find the matrix M and vectors V and G. This is
a very convenient way of computing the forward dynamics.

4. MODELING OF ANGLE AND TORQUE VECTORS

We model the torque and the angle sequences as ARMA processes
[13]. The dynamical model thus learnt is then used for identification
of human walking motion variations due to loading by calculating
the distance between the models. The models thus learnt are con-
tinuous state discrete time and since the model parameters lie in a
non-Euclidean space the distance calculation is nontrivial.

The ARMA model that has been used is defined as

α(t) = Cx(t) + w(t) where w(t) ∼ N(0, R) (2)

x(t + 1) = Ax(t) + v(t) where v(t) ∼ N(0, Q) (3)

The cross correlation between w and v is assumed to be S. It is
quite clear that the parameters of the model are A and C. However
the matrices A,C,R,Q and S are not unique. Hence we transform the
model to the ”innovation representation” which is unique.

Distance between two ARMA model is defined in terms of the
subspace angles [13] between the two models. The subspace an-
gle between two ARMA models are defined as the principal angles
(θi, i = 1, 2, . . . , n) between the column spaces generated by the
observability spaces of the two models augmented with the observ-
ability matrices of the inverse models. The Frobenius distance is
then defined as

dF =

vuut2

nX

i=1

sin2θi (4)

and the Gap distance is defined as

dg = sin θmax (5)

Another method used is dynamic time warping. It is a nonpara-
metric method for comparing two vector sequences. It is basically
the best nonlinear time normalization used to match two sequences
of vectors by searching the space of all allowed time normalizations.
In this implementation we have used some temporal constraints. Fur-
ther details are provided in [13]. The best warping function and the

global warping error are efficiently calculated using dynamic pro-
gramming. A global warping error measure is used to quantify the
distance between models.

5. EXPERIMENTS AND RESULTS

We have conducted several experiments to judge the validity of our
model. Most of the experiments have been done using the Stanford
marker data. However the same tests can be run on any video data
as long as we can extract the required information from the video
sequence, which is a nontrivial problem. The data that are required
from the sequence are the joint locations of the human body.

The experiments performed can be broadly divided into three
categories.

• The Inverse Dynamics experiments

• The Forward Dynamics experiments

• Model validation

Figure 4 shows the angle data extracted from the Stanford marker
data for a single individual walking normally.
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Fig. 4. The plots of angle data input to the inverse dynamics system
block for a single gait cycle. Angle between (a) Ground and the shin
of the support leg (b) Right shin and right thigh (c) Right thigh and
torso (d) Left thigh and torso (e) Left thigh and shin (f) Torso and
left upper arm (g) Left upper arm and lower arm (h) Torso and right
upper arm (i) Right upper arm and lower arm

Figure 5 shows the similarity matrices for the inverse dynamics
experiments. For all the matrices the columns correspond to twenty
normal walking sequences, twenty backpack carrying sequences and
twenty limping sequences. The rows contain the same sequences.
The matrices show that there is considerable similarity between se-
quences of the same type and hence can be used for identification
of different loading conditions. Specially the similarity matrices us-
ing dynamic time warping even show the similarity of walking styles
of the individual subjects in the form of the small diagonal squares.
Hence these sequences can also be used for recognition purposes.

For forward dynamics experiments we used the torque data of
the inverse dynamics simulation as inputs to the system. We simu-
lated the following walking patterns of a human

• Normal walking

• Walking with a heavy backpack
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Fig. 5. Inverse dynamics similarity matrices for angle sequences
using (a) ARMA modeling and gap distance (b) ARMA modeling
and Frobenius distance (c) dynamic time warping. Corresponding
torque sequence similarity matrices are shown in (d), (e) and (f)

• Waking when the right upper leg is loaded

In the validation experiments, the synthesized torque and an-
gle sequences in the forward dynamics experiments were compared
with those extracted from the Stanford marker data. Figure 6 shows
the similarity matrices. The rows correspond to the sixty sequences
present in the Stanford dataset. The five columns of the matrices
correspond to the synthesized sequences with one normal sequence,
two backpack carrying sequences and two limping sequences. The
similarity between the synthesized data and the Stanford marker data
empirically validates the model.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Validation similarity matrices for angle sequences using (a)
ARMA modeling and gap distance (b) ARMA modeling and Frobe-
nius distance (c) dynamic time warping. Corresponding torque se-
quence similarity matrices are shown in (d), (e) and (f)

6. CONCLUSION

We presented a dynamic model for simulating human walking and
also identification of some loading conditions of the walking person
like limping and carrying a backpack. The work clearly shows that

the torque data and also the angle data has discriminative power to
identify the loading conditions of the human body. The forward dy-
namics problem has been solved to generate human walking patterns
under different loading conditions. The artificial walking patterns
are very similar to the actual human marker data, validating the use
of the model. An important extension of this work is to integrate the
model with unconstrained video. The torque and angle sequences
can be used for recognition purposes too.
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