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ABSTRACT

Building face models is an essential task in face recognition,
tracking and etc. However, most of the current techniques
require hand-labelling or special machinery such as cyber-
scanner to extract the face model. In the paper, we propose an
unsupervised algorithm to learn the face texture from video.
The proposed approach models the video sequence as a mix-
ture of dynamic face-layers and background layers, where the
dynamic face-layers may undergo 3D motions in the video.
The hidden variables and their generating process is repre-
sented by probabilistic graphical model. The model is learnt
by EM algorithm with variational approximation. The pro-
posed approach offers several advantage over existing algo-
rithms. First, it derive its learning power by a generative
model which naturally represents the generating process of
videos. Second, it does not require any labelling or face detec-
tion algorithm. Third, the application domain of the proposed
algorithm is not restricted to extracting face texture and it can
be adapted to model other objects as well. The experimental
results demonstrate that our model is capable of learning the
appearance model of faces with complex 3D motions in the
video.

Index Terms— Video signal processing, unsupervised learn-
ing, pattern recognition

1. INTRODUCTION

Extracting face models from video sequence is an very im-
portant part for face recognition and many other tasks. While
two-dimensional face models are widely used in face recog-
nition, its limitation is obvious because generally they do not
distinguish rotation angle and shape of face images. One way
to overcome the limitation is to combine 2D face model from
multiple views [1]. 3D face models match the observed im-
age with a rigid or deformable 3D geometry and texture [2].
It completely separates the shape and rotation and is therefore
far more desirable in face recognition. The 3D face model can
be manually de ned and labelled , or learnt from 3D scans of
heads without texture or with texture . However, manually la-
belling requires much labor power and introduces subjective

error and 3D scanner need specially equipment such as cyber
scanner which is not popularly used.

In the paper, we propose a new unsupervised algorithm
to learn a semi-3D face model. The observed face image is
represented as a mixture of dynamic face-layers and back-
ground. As previous research shows, the 2D image is insuf-
cient in modelling the face; however, a fully 3D face model

introduces too many degrees of freedom and is hard to com-
pute in an unsupervised way. We therefore adopt a semi-3D
face model with dynamic foreground layers, i.e. the geom-
etry of the face is simpli ed to a cylinder with face texture
projected onto the cylindrical surface while the parameters of
the cylinder and have to be learnt from the video. The un-
known parameters of the model include size and the texture
of the dynamic face-layer. For most applications we found
the semi-3D model is a good enough approximation for tasks
like face recognition, face tracking and pose estimation.

The proposed algorithm is mathematically formulated as
the problem to learn a generative model such that the observed
video is well explained and scene analysis can be performed
ef ciently on top of that model. Such generative model [3]
[4] [5] usually includes the estimation of layer appearance,
shape and motion and these variables are iteratively updated
by EM algorithm [6]. In the proposed algorithm, probabilis-
tic graphical model is used to represent the random variables
and their relationship by nodes and conditional probabilities
and to provide a uni ed framework for learning and inference.

In this paper the extraction of face model is considered
as a probabilistic clustering problem, where the input data
is generated by mixing different clusters. Each cluster has
uni-modal density and may undergo 3D transformation. We
propose a inference algorithm that jointly estimates the layer
shape/appearance and 3D motion in an unsupervised manner.
Theoretically, this algorithm does not requires the frames to
be temporally order to compute the clusters; however, our ex-
periments indicate that the computational complexity can be
signi cantly improved by using motion prior which is straight-
forward to computed from ordered video sequences.

The rest of the paper is organized as follows: we describe
the model in Section 2 and the generative model in Section
3; the learning is discussed in Section 4; we show the experi-
mental results in Section 5 and conclude in Section 6.
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2. THE DYNAMIC FACE-LAYER MODEL

Extensive research has been performed in modelling face ge-
ometry and texture. 2D face models are usually built from
face images with manually labelled feature points such as eye
corners and mouth corners. 3D face models are much more
dif cult to obtain and usually require special equipment like
3D scanner. The drawback of these approaches is that none of
them are unsupervised, which is not desirable for a automatic
system.

We therefore propose to use dynamic face-layer (fore-
ground) and background layer model to solve this problem.
Face videos usually include out-plane rotation in a very wide
angle and directly representing face with a 2D layers is not
feasible. To our best knowledge, most previous research han-
dles out-plane motion by the probabilistic variation of the
model or shape/appearance deformation without explicitly com-
puting the out-plane motion. This does not work either in
modelling the face because the 3D motion of face is large
and can not be explained by model variation and deformation.
A model with 3D motion parameters is apparently necessary
for the face data. However, with too many parameters in the
model we face the curse of dimensionality and the problem
becomes intractable. We therefore propose a semi-3D gener-
ative model which gives us a good balance between represen-
tation power and computational complexity.

The shape of the 3D face layer is modelled as a cylinder
with face appearance projected on the cylinder surface. The
texture of the cylindrical layer is stored in a 2D unfolded im-
age. The shape parameters of the cylindrical layer include its
height h and radius r. The motion parameters include transla-
tion L, in-plane rotation θ and out-plane rotation P . The mo-
tion parameters of the model are illustrated in Fig 1(a), where
the human face is represented as a cylindrical dynamic face-
layer and the face texture is stored in a 2D unfolded image of
the cylinder.

In this paper, for simplicity, we only consider the situation
where there are only one dynamic face-layer and background
layer respectively. However, the proposed model can be ex-
tended to arbitrary number of layers in a straightforward way.

We denote the dynamic face-layer as f and the background
layer as b. The shape mask m of the object layer is a rectan-
gular binary map and can be easily computed given the ob-
ject size and motion. The generating process of the observed
video frame I at each pixel is modelled as:

I = mT · fT + (1− mT ) · b+ w (1)

where w is zero-mean Gaussian random noise, T is the trans-
formation of the dynamic face-layer including translation, in-
plane and out-plane rotation;mT is the shape mask after trans-
formation T (mT ∈ 0, 1), and fT is the foreground layer
after transformation T . The equations shows that the ob-
served image is modelled as the mixture of dynamic face-
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Fig. 1. The generative model of the dynamic face-layer.
(a)The motion model; (b)The generative process. See text
for details.

layers, background layers and observation noise. The dy-
namic face-layers and background layers are associated with
a shape parameter that consists the mixture weight at each
pixel.

3. THE GENERATIVE MODEL FOR FACE-LAYERS
WITH 3D MOTION

The generative model of the face layer is illustrated in Fig 1(b).
The generating process is an extension to the Transformed
Mixture of Gaussian model (TMG) in [7]. The model is rep-
resented by direct probabilistic graphical model where each
node represents a hidden variable and each edge represents a
conditional probability.

The cluster c and transformation T = {L,P, θ} are drawn
from the parameter space according to their prior distribu-
tions; a 2D latent face image Z is generated by 3D-to-2D
projection given the cluster mean, variance and out-plane ro-
tation P ; then the translation L and in-plane rotation θ are
applied to get the transformed latent image; nally the ob-
served image is obtained by mixing the zero-mean Gaussian
noise with the transformed latent image.

Given the above generative process, we de ne the obser-
vation likelihood of the image as:

P (I|T,m, f, b) = N(I;mT · fT + (1− mT ) · b, σ2o) (2)

and the likelihood of the video sequence is:

∏

t

P (It|Tt,m, f, b) (3)

where It, Tt are the observed frame and transformation at
time t. The likelihood of one image frame is a Gaussian with
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mean of the mixture of background and foreground. The over-
all likelihood of the video is the product of the likelihood for
each frames. We further assume that all pixels in one frame
are independent and the likelihood of one frame can be fac-
torized to the product of the likelihood of each pixel:

P (I|T,m, f, b) =
∏

i

N(I(xi);mT · fT (xi)

+ (1− mT ) · b(xi), σ2o(xi)) (4)

where xi is the set of all the pixels in the frame.
The TMG model in [7] and the exible sprites model in

[4] only use the 2D linear transforms of the dynamic fore-
ground layers. However, the 3D dynamic face-layer has non-
linear transformations such as out-plane rotation and projec-
tion. This introduces a problem because the projection from
3D surface to 2D image is a multiple to one mapping, i.e.,
multiple pixels in the 3D surface can correspond to one pixel
in the 2D image. In our algorithm we use the linear interpo-
lation of the four nearest neighbors.

4. LEARNING THE MODEL

4.1. Variational EM

We use expectation maximization (EM) [6] to learn the model
parameters under the framework of maximum likelihood (MLE).
The EM algorithm is an iterative algorithm that maximizes
the probability of the observed data according to the model.
Exact EM is intractable in our model because of its large pa-
rameter space. We instead choose variational method [8] to
solve this problem approximately.

In variational EM, we assume that posterior has a factor-
ized form:
∏

t

P (It|Tt, r, h, f, b) =
∏

t

q(r) · q(h) · q(Tt) (5)

where we assume q(r) = N(r;φr, σ2r), q(h) = N(h;φh, σ2h)
and σ2r , σ

2
h are known.

The variational bound of the log-likelihood is:

F =
∑

t

∑

Tt

∑

r,h

q(r, h) · q(Tt) · lnP (It|Tt, r, h, f, b)
q(r) · q(h) · q(Tt) (6)

As its name suggests, an EM algorithm consists of two
steps. In the generalized EM algorithm, F is optimized with
respect to the q distribution in E step and with respect to the
model parameters in the M step until it nally converges. We
brie y illustrate the EM algorithm as follows:

1. Given a guess of model parameter θ, we lower-bound
the objective function F (θ) with a function G(θ, q)

2. Find q distribution that maximize the lower bound. This
is the Expectation-step.

3. Maximize the lower bound with respect to the parame-
ter θ. This is the Maximization-step.

4. Go to 2 until it converges.

The EM algorithm is guaranteed to converged to a local
optimum on a given input. There may be multiple local op-
tima, and only one of these need to be a global optimum. Our
experiments suggest that such local optima can be effectively
reduced with good initialization and random restart.

4.2. E step

In the E step, the q distributions are optimized. Because the
mapping from 3D cylinder to 2D image is a nonlinear trans-
formation, a closed form update of φr and φh can not be
found. We instead used gradient ascent to do the optimiza-
tion:

φ(new)r = φ(old)r + λ · ∂F

∂φ
(old)
r

(7)

φ
(new)
h = φ(old)r + λ · ∂F

∂φ
(old)
r

(8)

where λ is the learning rate. To deal with the local maximum
problem, random restart is applied. Given the estimation of
φr and φh, we are able to compute the shape mask m(r, h),
which is a function of r and h.

q(Tt) is updated by setting the derivative of D with re-
spect to q(Tt) to 0. Here we also apply a Lagrange multiplier
to ensure that

∑
Tt
q(Tt) = 1:

q(Tt) =
1
NT

exp{− 1
2σ2o

[mTt(r, h) · (It − fTt)
2 + (1− mTt(r, h)) · (It − b)2]}

(9)

where mTt
, fTt

are the shape mask m and the foreground
appearance f transformed by Tt.

4.3. M step

In the M step, the model parameters are updated given the
estimation of q distribution from the E step. The update for
background layer appearance is:

b =
∑

t q(Tt) · (1− mTt
(r, h)) · It∑

t q(Tt) · (1− mTt
(r, h))

(10)

The appearance of foreground layer is updated as:

f =
∑

t q(Tt) · mTt(r, h) · Tt(It)∑
t q(Tt) · mTt(r, h)

(11)

where Tt(It) is the observed image It transformed by Tt.
In M step the appearance and mask are updated to their

expected value under q distribution computed in E step.
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Fig. 2. The rst two rows are the training images, the bottom
image is the learnt object appearance in a 2D unfolded image.

Fig. 3. The rst two rows are the training images, the bottom
row is the learnt face appearance in a 2D unfolded image.

5. EXPERIMENTAL RESULTS

Our experiments are carried out in the following way. The
videos are rst downsampled to 3 frames per second. The dy-
namic face-layer is initialized by the difference of st and fth
frames. The background layer is initialized by the average of
all the frames.

5.1. Extract the texture of a 3D object

In this experiment we use 65 frame in total. The sequence has
a can rotating and translating in a static background scene.
Our algorithm successfully extract the texture of this object.
The object appearance is shown in Fig 2.

5.2. Modelling the face texture

In this experiment the proposed algorithm is applied to face
video. The training data includes 35 image frames in which
the face rotated around 90 degree angle. The learnt appear-
ance model is presented in Fig 3.

5.3. Computational complexity comparison with ordered
and unordered frame sequence

We compare the computational complexity of the proposed
algorithm given naturally-ordered video frames and shuf ed

video frames. The computation is reduced by 93% for ’can’
sequence and 96% for ’face’ sequence if the video sequence is
naturally ordered. This is because in that case the proposed al-
gorithm can utilize motion prior to reduce the parameter space
in EM.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we extend the exible sprite model [4] and
TMG model [7] by introducing dynamic face-layers in the
task of extracting face textures from videos. The learning and
inference is performed by variational EM algorithm. Our ex-
periments show the proposed algorithm is capable of extract-
ing the textures of faces undergoing 3D motions out of the
scenes from video sequences.

Future work may include building a more generalized dy-
namic 3D layer model with exible geometry, developing ro-
bust algorithms for non-rigid motion and illumination change.
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