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ABSTRACT

This work addresses the problem of Mosquito Noise (MN) reduc-
tion in compressed video sequences. A compression-blind approach
is adopted; the advantage of such an approach is that it is indepen-
dent of the particular compressor used and of its particular settings.
A recursive filtering scheme is presented. It is shown how the filter-
ing parameter ε can be adaptively selected to maximize the denois-
ing performance by minimizing the number of outlier pixels in the
filter’s support. Simulation results show that the proposed blind MN-
denoising scheme outperforms existing MN-denoising methods.

Index Terms— Mosquito Noise, Epsilon Filter, Video, Denois-
ing, Restoration

1. INTRODUCTION
Standard video compression algorithms (e.g., MPEG-2, MPEG-4,
H.264) induce a number of common distortions or ”artifacts” on
the image: these include blocking, ringing, and mosquito noise.
Blocking is characterized by adjacent blocks having (visually) sig-
nificantly different average intensity levels. Ringing denotes the ap-
pearance of duplicate, lesser intensity edges parallel to true edges.
The further away the fake edges from the true one, the less pro-
nounced they become. Finally, mosquito noise (MN), which is the
focus of this paper, denotes the appearance of flickering ”clouds” of
pixels around borders of moving objects. Thus it also has a tempo-
ral nature as well as a spatial one. Each of these artifacts presents a
visual annoyance to the human viewer, especially in High Definition
content. Numerous algorithms have been proposed to reduce these
artifacts, from general de-noising procedures designed to address all
three [1], to artifact-specific de-noising algorithms [2]. One may
also classify de-noising algorithms as either compression-aware, to
indicate that the algorithm depends on knowledge/estimation of the
compressor’s parameters, or compression-blind, to indicate that the
algorithm does not use this information.

The focus in the current paper is on MN and the development
of a fast, flexible, compression-blind algorithm to reduce it. The
advantage of a compression-blind approach is that it is independent
of the particular compressor used and its particular settings.

Compared to blocking and ringing, MN has received the least
attention in the literature, be it on the analysis or on the de-noising
side. This is despite the fact that MN can cause significant visual
annoyance due to its temporal nature. One of the main difficulties in
dealing with MN is that it is still ill-defined, and there is no consen-
sus on how it is generated and how it manifests itself. Another diffi-
culty stems from the fact that MN is not generated by a single clear
mechanism but rather by a combination of different mechanisms.
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For example, while quantization of basis coefficients is known to be
one of the causes of MN [3, 4, 5], MN is further characterized in
[3] as a form of moving ringing that appears in ’dynamic scenes’ at
medium bit-rates. In [5], MN is characterized as ’a time-dependent
video compression impairement in which the high-frequency spatial
detail in video images having crisp edges is aliased intermittently’.
In addition, the authors of [5] indicate that they observed MN in still
image compression. In [4], MN is attributed to ’the coarseness of
the quantization of DCT coefficients of motion-compensated block
residuals (in the case of coding in INTER mode).’ This does not
explain the appearence of MN in still image compression reported
in [5]. Finally, some researchers suggest that the varying bit-rate
allocation from frame to frame plays a role in the creation of MN.
From the above, it can be seen that MN is the result of many in-
teracting compression mechanisms, including quantization, motion
compensated prediction and varying bit-rate allocation. These same
mechanisms are responsible for other observed types of artifacts,
such as blocking and ringing, which makes it hard to analyse and
de-noise MN in isolation of other artifacts.

This paper is organized as follows. Section 2 describes the ex-
isting MN de-noising techniques. A new ompression-blind MN de-
noising scheme is presented in Section 3. Simulation results and
comparisons with existing techniques are presented in Section 4.

2. EXISITINGMOSQUITO DE-NOISINGMETHODS
As indicated in Section 1, there are two main classes of MN-
denoising methods: compression-aware, which we won’t review here,
and compression-blind ( [6, 7, 8, 9, 10, 11, 12, 4, 13]). In this work,
the focus is on conpression-blind MN-denoising. Most of the MN-
specific literature emphasizes the fact that MN is a small-amplitude
deviation around a mean, usually set to 0. In [6], a spatial median
filter is applied to the DC coefficients of the DCT block-transforms,
followed by a temporal median filter on those coefficients. Blocks
are designated as motion or motionless based on a motion thresh-
old T, and only motionless blocks are filtered; the rationale for this
is that moving areas are visually more significant than others, and
hence, one should avoid blurring them by the temporal median. This
is rather a shortcoming of this method (called MNR by its devel-
opers in [6]) since, as observed, MN also appears near edges of
moving objects, so excluding them degrades the performance. This
highlights one of the main challenges in suppressing MN: its spatial
proximity to the edges and moving features means that one should
be careful about not distorting these features.

A compression-blind approach is proposed in [7]: intensity
blocks are classified as edge-blocks, if they contain an edge, and as
non-edge blocks otherwise. It is assumed that only edge-blocks ex-
hibit MN, and hence only these are filtered. Pixels that are not edge
pixels are then filtered using a classical local Wiener filter, whose
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support could contain edge pixels. However, in [7], MN is identi-
fied with ringing; it is well known however that MN and ringing are
separate artifacts, though the latter contributes to the former. An-
other issue is that non-edge blocks can contain MN, but they are not
filtered in [7]. In addition, the derivation of the Wiener filter as-
sumes zero correlation between the clean signal and the noise; given
the dependence of MN on content, this is not valid. Finally, the
derivation of the Wiener filter also assumes stationarity of all signals
involved; the fact that no care is taken to exclude edge pixels from
the filter’s support means that the stationarity assumption is violated.
Henceforth, we refer to this method as LOWTEM, for LOcal Wiener
filter, TEMporal filtering.

Another compression-blind paradigm is presented in [8], using
spatial median filtering. In this method, edge pixels are detected and
not processed, nor are they included in the filtering support of other
pixels. However, the spatial median used in [8] results in images
with blurred texture and is intended to be applied for de-noising very
low bit-rate video (8-40 kbps), with low-quality texture [8]. This is
not true for the typical medium- to high-bitrate content. So the post-
processor in [8] is not applicable for our purposes, since our interest
is in a de-noising technique that works at all rates.

One main challenge of MN de-noising is that texture itself ex-
hibits a small fluctuation around a mean, similar to MN. So, it is
hard to decide categorically whether the fluctuation within the cur-
rent processing aperture is clean texture or MN. To address this is-
sue, Arakawa et al. introduced ε-filters [9], and various modifica-
tions ( [9, 10, 11, 12, 4, 13]) were proposed to enhance their perfor-
mance. An ε-filter is a point-wise low-pass filter with space-varying
support. Only pixels whose intensity is within an ε of the pixel cur-
rently being filtered are included in the support. A simple extension
to the time-domain is made in [10]. The filter’s performance de-
pends significantly on the value of epsilon. The works in [4, 14, 13]
suggest (with slight variation between them) that ε be computed off-
line on a database of images so as to minimize the average Mean
Squared Error (MSE) between filtered and clean images. However,
an adaptive ε that minimizes the block-wise ”instantaneous” error
will outperform a fixed ε that minimizes the average MSE. In fact,
a training-based ε may not be optimal for any image, even one from
the training set. In [11] (reported to outperform the authors’ pre-
vious work in [12]), a block-adaptive value of ε is computed as
the standard deviation of the block normalized by its mean. How-
ever, no justification is given for this choice. Watabe et al. propose
that the ε-filter be preceded by a ”component separating” [15] filter
(a low-pass filter is suggested in [15]), that aims at separating the
”significant” components from the rest of the image, and preserv-
ing them from any processing. The authors of [15] indicate that this
achieves a de-sensitization of the system to the value of ε: since noise
is supposedly affecting the ”less significant” content, some error in
the value of ε can be tolerated; the result would still be overall visu-
ally pleasing. However, the significant components can well contain
significant amounts of MN, which are not denoised by this method
[15]. In what follows, we refer to this method as CSFEF.

3. PROPOSED RECURSIVE ε-FILTERING

This section presents a compression-blind recurisve ε-filter (REF)
that reduces MN noise in a video sequence by recursively apply-
ing an ε-filter to each video frame. The ε of the filter is adaptively
selected based on the local statistics of the image. Details of the ε
selection and a description of the proposed REF are presented in Sec-
tions 3.1 and 3.2, respectively. First, we start by defining ε-filters.

Consider an unknown signal L[u] distorted by additive random
noise n[u] in the range−J, ..., 0, ..., J , where u ∈ Z2 is the location

of the sample in the image:

f [u] = L[u] + n[u], n ∈ −J, ..., J (1)

Let W (u) be a fixed-shape and -size window centered around
f [u]. The output y[u] of the ε-filter with parameter ε, EF (ε), at u,
is defined as:

y[u] =

�
v∈S(u,ε) f [v]

|S(u, ε)| (2)

where S(u, ε) is the set of pixels in W (u) that differ from f [u] by
at most an ε; i.e.,

S(u, ε) = {v ∈W (u) : |f [u] − f [v]| ≤ ε}

In words, the output of the filter at any given pixel u is the arith-
metic average of the values in a window centered at u, differing from
f [u] by at most ε.
The motivation behind the EF is that MN consists of a fluctuating
cloud of pixels. The cloud’s fluctuation has a small amplitude, and
is usually centered around 0. Averaging these fluctuations out would
restore the clean values. This commonly held reasoning is correct,
under the condition that the clean values of pixels included in the
filter’s support are equal. Thus, a “good” ε is one which guarantees
that only pixels whose clean value equals the clean value of the cur-
rently filtered pixel are included in the support: S(u, εgood) = {v ∈
W (u) : L[u] = L[v]}. This is tackled in the next section.
3.1. Selection of ε
Given the above motivation, we will derive the value of ε that mini-
mizes the number of outliers in the filter’s support. Here, ‘outliers’
refers to pixels whose clean value differs from the clean value of
the currently filtered pixel. Therefore, assume pixel f [u] is being
filtered, with f [u] = a + n[u]. Now, ε should be chosen so as to
maximize the probability of f [v] ∈ W (u) be added to S(u) given
that L[v] = a. Formally,

ε∗(u) = argmaxεPr[|f [u] − f [v]| ≤ ε|L[v] = a]

= argmaxε
Pr[|f [u] − f [v]| ≤ ε, L[v] = a]

Pr[L[v] = a]

= argmaxεPr[|n[u] − n[v]| ≤ ε]

Since n[u] ∈ {−J, . . . , J}, n[u] − n[v] ∈ {−2J, . . . , 2J}, one
solution to the above problem is

ε∗ = 2J (3)

achieving a maximum probability of 1. Since J is, in general, un-
known, and varies between clouds of MN, it is approximated by the
noise standard deviation σn: for a uni-modal noise density like the
Generalized Gaussian, most of the mass will be within one standard
deviation. Hence ε∗ ≈ 2σn. The noise standard deviation will be ap-
proximated by the sample variance σ[u] around u, which is a valid
approximation in near-flat areas where MN is most annoying. Of
course, a more sophisticated variance estimator could be used.

3.2. Recursive ε-filter and algorithm flow
It has been pointed that the ε-filter’s performance depends on the
inclusion of like pixels in its support. Because the ε-filter operates
as a low-pass filter, its output has less variation than its input. So, we
propose a recursive ε-filter (REF) scheme in which the filter input is
recursively updated to include not only the initial noisy pixels, but
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MN-denoised image

Fig. 1. Flowchart of proposed recursive ε-filtering (REF) scheme.

also the filtered pixels as they become available. In other words, the
input image to the filter is always the most recently filtered version.

Fig. 1 summarizes the steps of the algorithm: the image is di-
vided into blocks, and the standard deviation in each is measured. ε
for that block is selected as ε = κσ[u], with κ = 2. The edge pixels
are detected (using a standard Canny detector) and not filtered. Not
filtering the edge pixels serves to avoid excessive blurring of visually
important features. Then the block -minus its edge pixels- is filtered
in a recursive fashion as described above.

4. EXPERIMENTAL RESULTS

This section presents sample MN-denoising results using the pro-
posed REF scheme, and comparisons with exisiting MN-denoisers.
Fig. 2 shows the denoising results on the MPEG-4 compressed Frame
10, 956 (Fig. 2(a)) of the 240×360 Near Science video sequence.
This Near Science sequence is compressed using MPEG-4 at 4.9
Mbps, and can be downloaded from http://pdos.csail.mit.edu/scigen/
#talks (the low quality version was used). Fig. 2(e) shows the ob-
tained MN-denoised frame using the proposed compression-blind
REF scheme. For comparison, Figs. 2(b), (c) & (d) show the re-
sulting denoised frame using the existing MNR [6], CSFEF [15] and
LOWTEM [7] MN-denoising schemes, respectively. It can be seen
that the proposed REF MN-denoising scheme is capable of signif-
icantly reducing the mosquito noise (Fig. 2(e)) as compared to the
existing MNR [6] (Fig. 2(b)) and CSFEF [15] (Fig. 2(c)) schemes.
The existing LOWTEM [7] MN-denoising scheme (Fig. 2(d)) results
in a significant blurring of the denoised frame as compared to the
proposed REF MN-denoising scheme (Fig. 2(e)). In addition, sub-
jective quality assessment was conducted for several MN-denoised
video sequences. These assessment results also confirm that the pro-
posed REF MN-denoising scheme is superior, as compared to the
existing MN-denoising methods [6, 15, 7], in terms of impairement
visibility and overall visual quality.
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(a) Noisy (b) MNR [6]

(c) CSFEF [15] (d) LOWTEM [7]

(e) Proposed REF

Fig. 2. Results of proposed and existing MN-denoising schemes on Frame 10, 956 of the 240×360 Near Science video sequence.
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