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ABSTRACT

High-quality digital video filtering applications pose in-

teresting challenges. Noise reduction cannot come at the ex-

pense of losing picture detail or introducing post-filtering ar-

tifacts. We address these issues by proposing an adaptive

spatio-temporal method for reducing noise in digital video.

The novelty of this method is that it aims to achieve an “even”

amount of noise reduction at each pixel while preserving pic-

ture detail. The emphasis on even noise reduction helps re-

duce post-filtering artifacts arising from uneven filtering. We

further propose an algorithm for automatically estimating the

key filtering parameters, given two intuitive high-level inputs,

filtering strength and a tolerance value. The high-level inputs

provide user-friendly “knobs” that could be adjusted to obtain

the desired filtering performance.

Index Terms— digital video filtering, spatio-temporal fil-

tering, film grain removal

1. INTRODUCTION

There is an increasing demand among consumers for high-

quality digital video content, resulting in technologies such

as high-definition (HD) broadcast channels, HD-DVD, and

so on. Interesting challenges arise for content creators while

processing video for high-quality applications. Some appli-

cations, such as pre-filtering for video compression (to re-

duce bit rates), require high noise reduction and are more

tolerant toward losing picture detail. Others, such as movie

post-production, desire noise reduction but do not tolerate

loss of picture detail or post-filtering artifacts, i.e. artifacts

introduced by the filtering process. These tend to use fil-

ters with conservative settings in an effort to preserve detail,

which could result in uneven noise removal over the picture,

which in turn could cause visual artifacts.

The challenge then is to design noise reduction filters that

provide a graceful tradeoff between the amount of noise re-

duction and the resulting loss of picture quality. Our approach

addresses this problem by adapting the filter characteristics on

a pixel by pixel basis, attempting to enforce an “even” amount

of noise reduction across all pixels in a video while preserv-

ing picture detail. The emphasis on even noise reduction helps

reduce post-filtering artifacts which could arise from uneven

filtering.

Most video noise reduction filters [1] exploit correlations

between pixels in order to remove the uncorrelated noise. Spa-
tial filters exploit pixel correlations in space, whereas tempo-
ral filters exploit correlations in time. Spatial filters are inex-

pensive but tend to introduce artifacts such as abrupt intensity

changes and blurring of picture detail. Temporal filters avoid

such artifacts. However, in order to account for temporal non-

stationarity due to object and camera motion, temporal filter-

ing commonly includes an expensive motion compensation

step.

Spatio-temporal filters exploit correlations in both the spa-

tial and the temporal directions. Previously proposed spatio-

temporal filters [1] have married spatial and temporal filters

in a variety of ways. Approaches that combine the two at the

frame-level include applying temporal filtering after spatial

filtering [2], computing a weighted combination of spatial and

temporal estimates [3, 4], and performing temporal decorre-

lation followed by spatial filtering [5]. Combining spatial and

temporal filtering at the pixel-level is expected to provide vi-

sually better results, although more expensive to implement.

Such methods include adapting 3-D spatio-temporal filter co-

efficients at each pixel [6, 7], and nonlocal means image de-

noising [8].

In this paper, we propose a pixel-level adaptive spatio-

temporal method. It differs from the previous methods thus:

a) each pixel is filtered by averaging it with a constant number

of temporally or spatially correlated pixels, and b) the corre-

lated pixels are sought in a specific order. The former property

aims to achieve an “even” amount of noise reduction in order

to avoid artifacts. The latter aims at preserving picture detail

since temporally correlated pixels are generally superior to

spatially correlated ones in this regard. Complexity is kept in

check by avoiding pixelwise estimation of filter coefficients.

The filtering process is a simple average of pixels selected by

some criteria.

Another contribution of this paper is a user-friendly method

of controlling the quality of filtering. The quality of filtering
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relies on many internal parameters of the filtering method.

The “optimal” parameters depend on the video content. For

inexperienced users, it often requires a time-consuming trial-

and-error process to arrive at parameter values that result in

good filtering quality. Therefore, we propose an algorithm

that automatically estimates these parameters based on two

intuitive high-level inputs, strength and tolerance. The high-

level inputs provide user-friendly “knobs” that could be ad-

justed to obtain the desired filtering performance.

2. ADAPTIVE SPATIO-TEMPORAL FILTERING

Algorithm 1 outlines the proposed adaptive spatio-temporal

filtering algorithm, applied to the luma component of the video.

The same procedure applies to the chroma components with

a small modification described later. Note that a pixel p is

shorthand for p(x, y, t) where x and y are the spatial coordi-

nates and t is the frame index (time). Pixel p can be split into

(pY , pU , pV ), its luma (Y) and chroma (U, V) components.

The algorithm comprises three major parts, 1) selection

of temporal candidates, 2) selection of spatial candidates, and

3) filtering by averaging the selected candidates. For filtering

each pixel p in the video, the goal is to find N “good” candi-

dates for averaging p with (including itself), where N is a con-

stant through the filtering process. Let these “good” candi-

dates be put in an averaging set Ap = {p, ci; i = 1, . . . , M},

where M ≤ N − 1, and M < N − 1 only when enough

“good” candidates are unavailable. Then the filtering process

involves replacing p by the average of the elements of Ap.

The N “good” candidates are first sought in the temporal

domain since temporal filtering is less likely to blur visual de-

tails. The temporal part first involves estimating the motion of

pixel p from the current frame to n reference frames (usually

the n/2 frames before and the n/2 frames after the current

frame). Thereafter, each temporally predicted pixel qj (from

the jth reference frame) is considered in turn as a candidate

for Ap. If it is determined to be a “good” predictor, it is added

to the set.

If we are unable to locate N “good” candidates in the tem-

poral domain, we start looking for candidates in the spatial

domain. One possibility is that we consider all pixels in a

spatial r-neighborhood of p given by

Nr (p(x, y, t)) = {p(x + i, y + j, t); i, j = ±1, . . . ,±r} (1)

where r = rY for the luma component and r = rC for the

chroma components. The value r is termed the radius of the

neighborhood. The order in which we consider the spatial

neighbors is determined by the proximity of the candidate

pixel to p. If the candidate pixel is determined to be “good,”

it is added to Ap. Once N “good” candidates are obtained or

all candidates have been scanned, we proceed to the filtering

step. In this step, p is replaced by the average of the elements

of Ap and we move on to the next pixel to be filtered.

One missing detail is a method of determining the “good-

ness” of candidates. In our implementation, a patch-based

Algorithm 1 Adaptive Spatial-Temporal Filtering

1: Given N , the desired number of averaging candidates
2: Given the luma threshold, TY

3: Given the spatial neighborhood, NrY (p)
4: for all pixels p do
5: Initialize averaging set Ap = {pY }
6: for all reference frames j = 1, . . . , n do
7: Get motion-based predictor qj from frame j
8: if d(pY , qj,Y ) < TY then
9: Add qj,Y to Ap

10: if |Ap| = N then
11: Skip to line 23
12: end if
13: end if
14: end for
15: for all spatial neighbors k ∈ NrY (p) do
16: if |pY − kY | < TY then
17: Add kY to Ap

18: if |Ap| = N then
19: Skip to line 23
20: end if
21: end if
22: end for
23: Filtered pixel pfilt,Y ← average of all elements in Ap

24: end for

measure d(p, q) is used for temporally predicted candidates

and a pixel difference measure is used for spatial candidates.

The patch-based measure is given by

d(p, q) =

[∑w
i,j=−w |p(x + i, y + j) − q(x + i, y + j)|2

(2w + 1)2

] 1
2

(2)

where w is the radius of the patch or window. The tempo-

ral predictor q is said to be “good” if d(p, q) is less than a

specified threshold. For spatial filtering, a candidate q is as-

sumed to be “good” if |p−q| is less than a specified threshold.

Note that the thresholds for luma and chroma, TY and TC , are

specified separately.

The procedure for filtering the chroma components is sim-

ilar to that for the luma component, except that the chroma

components (U, V) are filtered together in one pass. For a

pixel p, both pU and pV are replaced by the average of their

respective candidates. The “goodness” criteria for choosing

U and V candidates are the same. A temporal candidate qj

is “good” if d(pU , qj,U ) < TC and d(pV , qj,V ) < TC . Simi-

larly, a spatial candidate k is “good” if |pU − kU | < TC and

|pV − kV | < TC .

3. AUTOMATIC PARAMETER ESTIMATION

The automatic parameter estimation method estimates four

parameters: the luma and chroma neighborhood radii (rY ,

rC) of the spatial neighborhoods from which spatial candi-

dates are obtained, and the luma and chroma thresholds (TY ,

TC) used to verify the “goodness” of spatially or temporally

predicted candidate pixels. The method takes two intuitive
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Algorithm 2 Automatic Threshold Estimation

1: Given N , the filtering strength
2: Given α, the tolerance percentage value
3: Given the spatial neighborhood radius, rY

4: Detect homogeneous regions in the video. Let all pixels therein
form a set H .

5: for all thresholds u = 1, . . . , 256 do
6: y ← 0
7: for all pixels p ∈ H do
8: np,u ← 0
9: for all spatial neighbors k ∈ NrY (p) do

10: if |pY − kY | < u then
11: np,u ← np,u + 1
12: end if
13: end for
14: if np,u < N then
15: y ← y + 1
16: end if
17: end for
18: βu = 100 × y/|H|
19: if βu ≤ α then
20: Skip to line 23
21: end if
22: end for
23: TY ← u

user inputs, strength and tolerance. “Strength” refers to the

filtering strength, specifically the desired number of pixel can-

didates (N ) to average over while filtering each pixel. The

higher the N , the greater the expected noise reduction. “Tol-

erance” refers to the acceptable percentage, say α, of inade-

quately filtered pixels, i.e. pixels that do not have at least N
candidates to average with. For example, α = 5% means that

we shall try to choose thresholds such that no more than 5%

of pixels are inadequately filtered. A lower tolerance drives

the thresholds higher, thereby forcing more pixels to be ad-

equately filtered at the expense of blurring detail. A higher

tolerance goes easier on fine details by allowing more pixels

to be less filtered.

Given the filtering strength N , the first task is to esti-

mate the spatial neighborhood radius, r in (1). We choose

the smallest positive integer r such that the neighborhood

contains at least 2N pixels not including the center pixel,

i.e. r = �
√

2N−1
2 � (where �.� denotes the ceiling operator).

This ensures that there are enough candidates in the neigh-

borhood to choose N “good” candidates from. If the desired

luma and chroma filtering strengths, NY and NC , are differ-

ent, their radii, rY and rC , may also be different.

The next task is to estimate the candidate verification thr-

esholds. Algorithm 2 outlines the automatic threshold estima-

tion method. This method is applied separately to the luma

and chroma components of the sequence. The first step of the

procedure is to detect homogeneous regions in the video. Ho-

mogeneous regions are those that (except for a mean value)

contain only the noise pattern that we wish to remove. Any

homogeneous region detection method (e.g. [9]) can be used.

Let the set H contain all the pixels in the detected ho-

mogeneous regions. Now, all the possible thresholds, u =
1, . . . , 256, are considered in order. Let the current value

of the threshold be u. For each pixel p ∈ H , the number

np,u of neighbors k ∈ NrY
(p) that satisfy the constraint

|pY − kY | < u are found. If np,u ≥ N , then the pixel p
is said to be “adequately” filtered. After scanning all pixels

p ∈ H , the percentage of pixels in H that are not adequately

filtered (say βu) is computed. If βu ≤ α, then the procedure

is terminated and the luma threshold, TY , is set to u. The pro-

cedure for the chroma components is the same except for the

evaluation of the threshold constraint. Here, a pixel p is said

to be adequately filtered if at least N neighbors exist, such

that |pU − kU | < u and |pV − kV | < u.

4. EXPERIMENTAL RESULTS

An important application of video filtering is the attenuation

of “film grain” from high-resolution video content. Film grain

is the grainy noise pattern in digital video introduced by scan-

ning the grain of the original film source. It is often necessary

to attenuate the film grain in digital video without losing pic-

ture detail or introducing post-filtering artifacts in the process.

In this scenario, we compare the proposed algorithm with spa-

tial filtering and temporal filtering, in order to appreciate the

gain of combining the two approaches.

Three 480 × 480 video clips, which we name Clips 1-3,

are cropped from different HD digital videos. These are fil-

tered using a wide range of strengths (N = 5 to 17) and toler-

ances (α = 5% to 20%). Table 1 illustrates the variation of the

noise reduction with strength and tolerance, considering the

luma component of Clip 1. Noise reduction here is defined

as the ratio of the empirically measured noise variance (in

homogeneous regions) in the original video to that in the fil-

tered video. Notice that the noise reduction is proportional to

the strength and inversely proportional to the tolerance. The

reason for the latter is that a higher tolerance leads to more in-

adequately filtered pixels (see Fig. 3) and thus is more likely

to retain picture details.

The proposed method combines the advantages of spatial

and temporal filtering to give a better visual result than ei-

ther method applied by itself. Fig. 1 shows zoomed details

after filtering Clip 1 using both the proposed method and spa-

tial filtering. Note that details (better seen in the electronic

pdf version) are better preserved as compared to spatial fil-

tering. Fig. 2 shows zoomed details from Clips 2 and 3 after

filtering them using both the proposed method and motion-

compensated temporal filtering. The top row demonstrates

the ability of the proposed method to filter noise even in high-

Table 1. Noise reduction in luma for different strengths (N ) and
tolerances (α).

N = 5 N = 9 N = 17

α = 5% 2.3354 3.0346 3.2494

α = 20% 1.5997 2.4009 2.4142
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(a) (b) (c)

Fig. 1. Comparison with spatial filtering: (a) Original; (b) proposed
method; and (c) spatial filtering. Notice the blurring of details in (c).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Comparison with temporal filtering: (a,d,g) Original; (b,e,h)
proposed method; and (c,f,i) temporal filtering.

motion areas, wherein motion compensation (and hence tem-

poral filtering in Fig. 2c) performs poorly. The same is ob-

served in the case of sudden illumination changes (middle

row), in the vicinity of a gunshot in the frame. The bot-

tom row illustrates the reduced occurrence of blocking arti-

facts when using the proposed method. Note that the blocki-

ness is more visible in the temporally filtered result (Fig. 2i).

Blocking artifacts, a common side-effect of block-based mo-

tion compensation, are mostly smoothed away by the spatial

component of the proposed approach.

5. CONCLUSION

We have proposed an adaptive spatio-temporal method for

noise reduction in digital video. The proposed method pro-

vides a graceful tradeoff between the amount of noise reduc-

tion and the resulting loss of picture quality. Our approach at-

tempts to enforce an “even” amount of noise reduction across

all pixels in a video while preserving picture detail. Each

(a) (b) (c)

Fig. 3. Effect of the “tolerance” value: (a) Original; (b) Tolerance =
20%; and (c) Tolerance = 5%. Notice that (b) has more inadequately
filtered pixels.

pixel is filtered by averaging it with a constant number of

temporally or spatially correlated pixels, which are sought in

a specific order. The emphasis on even noise reduction helps

reduce post-filtering artifacts which could arise from uneven

filtering.

Another contribution of this paper is an algorithm for au-

tomatically estimating the key filtering parameters, given two

intuitive high-level inputs, filtering strength and a tolerance

value. The high-level inputs provide user-friendly “knobs”

that could be adjusted to obtain the desired filtering perfor-

mance. This makes it easier for the user to achieve the afore-

mentioned strength/quality tradeoff.
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