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ABSTRACT
Super resolution (SR) is a well-known technique to increase the

quality of an image using multiple overlapping pictures of a scene.
SR requires accurate registration of the images, both geometrically
and photometrically. Most of the SR articles in the literature have
considered geometric registration only, assuming that images are
captured under the same photometric conditions. This is not neces-
sarily true as external illumination conditions and/or camera param-
eters (such as exposure time, aperture size and white balancing) may
vary for different input images. Therefore, photometric modeling
is a necessary task for super resolution. In this paper, we investi-
gate super-resolution image reconstruction when there is photomet-
ric variation among input images.

Index Terms— Super resolution, photometric registration, high
dynamic range imaging

1. INTRODUCTION

Detailed visual descriptions are demanded in a variety of commercial
and military applications, including surveillance systems, medical
imaging, and aerial photography. Imaging devices has limitations in
terms of, for example, spatial resolution, dynamic range, and noise
characteristics. Researchers are working to improve sensor charac-
teristics by exploring new materials, manufacturing processes, and
technologies. In addition to the research in sensor technology, im-
age processing ideas are also explored to improve image quality.
One of these image processing ideas is super-resolution image re-
construction, where multiple images are combined to improve spa-
tial resolution. Super resolution (SR) algorithms exploit information
diversity among overlapping images through subpixel image regis-
tration. Subpixel accurate registration allows to obtain frequency
components that are unavailable in individual images. The idea of
SR image reconstruction has been investigated extensively, and com-
mercial products are becoming available. For detailed literature sur-
veys on SR, we refer the readers to other sources [1, 2].

In this paper, we focus on a new issue in SR: How to do SR when
some of the input images are photometrically different than the oth-
ers. Other than a few recent papers, almost all SR algorithms in the
literature assume that input images are captured under the same pho-
tometric conditions. This is not necessarily true in general. External
illumination conditions may not be identical for each image. Images
may be captured using different cameras that have different radio-
metric response curves and settings (such as exposure time and ISO
settings). Even if the same camera is used for all images, camera pa-
rameters (exposure time, aperture size, white balancing, gain, etc.)
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may differ from one image to another. Therefore, an SR algorithm
should include a photometric model as well as a geometric model
and incorporate these models in the reconstruction.

In photometric modeling, one should take into account the cam-
era response function (CRF) in addition to the camera settings. The
CRF, which is the mapping between the irradiance at a pixel to the
output intensity, is not necessarily linear. Charges created at a pixel
site due to incoming photons may exceed the holding capacity of
that site. When the amount of charge at a pixel site approaches the
saturation level, the response may deviate from a linear response. In
addition to unavoidable physics-originated nonlinearity of a sensor,
camera manufacturers may also introduce intentional nonlinearity to
CRF to improve contrast and visual quality.

The saturation of CRF and finite number of bits (typically eight
bits per channel) to represent a pixel intensity limit the resolution
and the extend of the dynamic range that can be captured by a dig-
ital camera. Because a real scene typically has much wider dy-
namic range than a camera can capture, an image captures infor-
mation from only a limited portion of a scene. By changing ex-
posure rate, it is possible to get information from different parts of
a scene. In high-dynamic-range (HDR) imaging research, multiple
low-dynamic-range (LDR) images (that are captured with different
exposure rates) are combined to produce a HDR image [3, 4].

Despite the likelihood of photometric variations among images
of a scene, there are few SR papers addressing reconstruction with
such image sets. In [2], photometric changes were modeled as global
gain and offset parameters among image intensities. This is a suc-
cessful model when photometric changes are small. When photo-
metric changes are large, nonlinearity of CRF should be taken into
consideration. In [5], we included a nonlinear CRF model in the
imaging process, and proposed an SR algorithm. The algorithm pro-
duces high-spatial-resolution and high-dynamic range images based
on the maximum a posteriori probability estimation technique. The
algorithm presented in [5] is actually one of the approaches that can
be taken when there is photometric diversity among input images.
This will be explained later in the paper.

2. PHOTOMETRIC MODELING

For a complete SR algorithm, spatial and photometric processes of
an imaging system should be modeled. Spatial processes (spatial
motion, sampling, point spread function) have been investigated rel-
atively well; we focus on only the photometric side in this paper.
As mentioned earlier, in the context of SR, two photometric models
have been used. The first one is the affine model used in [2], and the
second one is the nonlinear model used in [5]. In this section, we
review and compare these two models.
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2.1. Affine Photometric Model

Suppose that N images of a static scene are captured and these im-
ages are geometrically registered. Let q be the irradiance of the
scene, and zi be the ith measured image. According to the affine
model, the relation between the irradiance and the image is as fol-
lows:

zi = aiq+ bi, i = 1, ..., N, (1)

where the gain (ai) and offset (bi) parameters can model a variety
of things, including global external illumination changes and cam-
era parameters such as gain, exposure rate, aperture size, and white
balancing. Then, the ith and the jth images are related to each other
as follows:

zj = ajq+ bj = aj

�
zi − bi
ai

�
+ bj =

aj
ai
zi+

aibj − ajbi
ai

. (2)

Defining αji ≡ aj
ai

and βji ≡ aibj−ajbi
ai

, we can in short write

(2) as
zj = αjizi + βji. (3)

The affine relation given in (3) is used in [2] to model photomet-
ric changes among the images to be used in SR reconstruction. In
[2], the images are first geometrically registered to the reference im-
age to be enhanced. After geometric registration the relative gain and
offset terms with respect to the reference image are calculated with
least squares estimation. Each image is photometrically corrected
using the gain and offset terms. This is followed by SR reconstruc-
tion.

2.2. Nonlinear Photometric Model

A typical image sensor has a nonlinear response to amount of light
it receives. According to the nonlinear photometric model, an image
zi is related to the irradiance q of the scene as follows:

zi = f (aiq+ bi) , (4)

where f(·) is the camera response function (CRF), and ai and bi are
again the gain and offset parameters as in (1). Then, two images are
related to each other as follows:

zj = f

�
aj
ai
f−1 (zi) +

aibj − ajbi
ai

�
= f

�
αjif

−1 (zi) + βji

�
.

(5)
The function f

�
αjif

−1(·) + βji

�
is known as the intensity map-

ping function (IMF). Although IMF can be constructed using CRF
and exposure ratios, it is not necessary to estimate camera parame-
ters to find IMF. IMF can be extracted directly from the histograms
of the images [6].

CRF can also be estimated without finding IMF. In [7] a para-
metric CRF model is proposed; and these parameters are estimated
iteratively. [8] used a polynomial model instead of a parametric
model. In [4], a nonparametric CRF estimation technique with a
regularization term is presented. Another nonparametric CRF esti-
mation method is proposed in [9], which also includes modeling of
noise characteristics.

2.3. Comparison of Photometric Models

Here, we provide an example to compare affine and nonlinear pho-
tometric models. In Figure 1(a, b, c, d), we provide four images
captured with a hand-held digital camera. One of the images is set
as the reference image (Figure 1(d)) and the others are converted to
it photometrically using the affine and nonlinear models. (Before
photometric conversion, images were registered geometrically.) The
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Fig. 1. Comparison of affine and nonlinear photometric conversion.
(a)-(d) are the images captured with different exposure rates. All
camera parameters other than the exposure rates are fixed. The im-
ages are geometrically registered. The relative exposure rates are
1/16, 1/4, 1/2, and 1, respectively. Image z4 is set as the reference
image and other images are photometrically registered to it. (e)-(g)
are the residuals using the affine model. (h) The photometric map-
pings for (e)-(g). (i)-(k) are the residuals using the nonlinear model.
(l) The photometric mappings for (i)-(k).

residual images computed using the affine model (Figure 1(e, f, g))
and the nonlinear model (Figure 1((i, j, k)) are displayed. The affine
model parameters are estimated using the least squares technique
and are shown in Figure 1(h). The nonlinear IMFs are estimated us-
ing the method in [10]. The estimated mappings are shown in Figure
1(l). As seen from the residual images, the nonlinear model works
better than the affine model. The affine model performs better when
the exposure ratios are close; the model becomes more and more
insufficient as the exposure ratios differ more.

A super-resolution algorithm requires an accurate modeling of
the imaging process. The restored image should be consistent with
the observations given the imaging model. A typical iterative SR
algorithm starts with an initial estimate, calculates an observation
using the imaging model, finds the residual between the calculated
and real observations, and projects the residual back on the initial
estimate. When the imaging model is not accurate or registration
parameters are not estimated correctly, the algorithm would fail. In
this section, we conclude that nonlinear photometric models should
be a part of SR algorithms when there is a possibility of photometric
diversity among input images.

3. SR UNDER PHOTOMETRIC DIVERSITY

When all input images are not photometrically identical, there are
two possible ways to enhance a reference image: (i) spatial resolu-
tion enhancement and (ii) spatial resolution and dynamic range en-
hancement. In (i), only spatial resolution of the reference image is
improved. This requires photometric mapping of all input data to the
reference image. In (ii), both spatial resolution and dynamic range of
the reference image are improved. This can be considered as a com-
bination of high-dynamic-range imaging and super-resolution image
restoration.

3.1. Spatial Resolution Enhancement

In spatial resolution enhancement, all input images are converted to
the tonal range of reference image. After photometric registration,
a traditional SR reconstruction algorithm can be applied. However,
this is not a straightforward process when the intensity mapping is
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Fig. 2. Various photometric conversion scenarios. First row illus-
trates possible photometric conversion functions. Correspondingly,
second row shows the input, and last row shows the reference image
which produces the tonal conversion functions in first row.

nonlinear. Refer to Figure 2 that shows various intensity mapping
functions (IMFs). Suppose that z1 is the reference image to be en-
hanced. Input image z2 is aimed to be photometrically converted
onto z1 in all cases. There are four cases in Figure 2:

• In case (a), the input image z2 is photometrically same as the
reference image; so there is no photometric registration necessary.

• In case (b), the IMF is nonlinear; however, there is no satura-
tion. Therefore, the intensities of z2 can be mapped onto the range
of z1 using the IMF without loss of information.

• In case (c), there is bright saturation in z2. The IMF is not
a one-to-one mapping. The problematic region is where the slope
of the IMF is zero or close to zero. For saturated regions, there is
no information in z2 corresponding to z1. Therefore, photometric
registration is not possible from z2 to z1. Even for the small-slope
regions, noise in z2 would be amplified and reconstruction would be
affected negatively.

• In case (d), there are regions of small slope and large slope.
Large-slope regions are not issue because mapping from z2 to z1
would not create any problem. The problem is still with the small-
slope regions (dark saturation regions in z2), where quantization and
noise floor are effective.

One solution to this saturation problem is to use a certainty func-
tion associated with each image. The certainty function should weight
the contribution of each pixel in a photometrically registered image
based on the reliability of conversion. If a pixel is saturated or close
to saturation, then the certainty function should be close to zero. If a
pixel is from a reliable region, then the certainty function should be
close to one.

We now put these ideas in SR reconstruction. Let x be the (un-
known) high-resolution version of a reference image zr , and define
gri (zi) as the IMF that takes zi and converts it to the photomet-
ric range of zr , (therefore, x). Referring to equation (5), gri (zi)
includes the CRF f(·), and gain αri and offset βri parameters:

gri (zi) ≡ f
�
αrif

−1 (zi) + βri

�
. (6)

We also need to model spatial processes. Define Hi as the lin-
ear mapping that takes a high-resolution image and produces a low-
resolution image. In this case, Hi is applied on x to produce the
photometrically converted ith observation gri (zi). Hi includes mo-
tion (of the camera or the objects in the scene), blur (caused by the
point spread function of the sensor elements and the optical system),
and downsampling. (Details of Hi modeling can be found in the
special issue of the IEEE Signal Processing Magazine [1] and the
references therein.)

We need to find x that produces gri (zi)whenHi is applied to it,
for all i. The least squares solution to this problem would minimize
the following cost function:

C(x) =
�

i

‖gri (zi)−Hix‖2. (7)

As explained earlier, the problem associated with the saturation of
the IMF can be solved using a certainty function, w(zi). We for-
mulate our equations using a generic weight function w(zi). Our
specific choice will be given in the experimental results section. We
now define a diagonal matrixWi whose diagonal is w(zi), and use
this matrix as multiplicative term in equation (7) for constructing the
weighted least squares cost function. This new cost function is

C(x) =
1

2

�
i

(gri (zi)−Hix)
T Wi (gri (zi)−Hix). (8)

Since dimensions of the matrices are large, we wanted to avoid ma-
trix inversion and apply the gradient descent technique to find x that
minimizes this cost function. Starting with an initial estimate x(0),
each iteration updates x(0) in the direction of the negative gradient
of C(x):

x(k+1) = x(k) + γ
�

i

HT
i Wi

�
gri(zi)−Hix

(k)
�
, (9)

where γ is the step size at the kth iteration. We found γ using the

exact line search that minimizesC
�
x(k) + γΦ

�
at each step, where

Φ is the negative gradient of C.

3.2. Spatial Resolution and Dynamic Range Enhancement

Here, the goal is to produce a high-resolution and high-dynamic
range image. This requires formulating the image acquisition from
the unknown high-resolution irradiance q to each observation zi.
Adding the spatial processes (geometric warping, blurring with the
PSF, and downsampling) to equation (4), the imaging process can be
formulated as

zi = f (aiHiq+ bi) , (10)

where Hi is the linear mapping (including warping, blurring, and
downsampling operations) from a high-spatial-resolution irradiance
signal to a low-spatial-resolution irradiance signal. f(·), ai, and bi
are the CRF, gain, and offset terms as in (4).

This time the weighted least squares estimate of qminimizes the
following cost function:

C (q) =

1
2

�
i

�
f−1(zi)−bi

ai
−Hiq

�T

Wi

�
f−1(zi)−bi

ai
−Hiq

�

(11)
This cost function is basically analogous to the cost function in equa-
tion (8). Starting with an initial estimate for q, the rest of algo-
rithms work similar to the previous one. The only difference is that
intensity-to-intensity mapping gri(·) in (8) is replaced with intensity-
to-irradiance mapping

f−1(·)−bi
ai

. Unlike the intensity-to-intensity

mapping, intensity-to-irradiance mapping requires explicit estima-
tion of the CRF, gain and offset parameters.

In [5], we investigated this spatial and dynamic range enhance-
ment idea in more detail. We left out the details in this paper.
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4. GEOMETRIC AND PHOTOMETRIC REGISTRATION

SR requires accurate geometric and photometric registration. If the
actual CRF and the exposure rates are unknown, the images must be
geometrically registered before these parameters can be estimated.
On the other hand, geometric registration is problematic when im-
ages are not photometrically registered. There are three possible
approaches to this problem: (i) Images are first geometrically reg-
istered using an algorithm that is insensitive to photometric changes.
This is followed by photometric registration. (ii) Images are first
photometrically registered using an algorithm that is insensitive to
geometric misalignments. This is followed by geometric registra-
tion. (iii) Geometric and photometric registration parameters are es-
timated jointly.

We take the third in experiments. For geometric registration,
we used a feature-based algorithm, which requires robust exposure-
insensitive feature extraction and matching. In our experiments, fea-
ture points are first extracted using the Harris corner detector [11].
These feature points are matched using normalized cross correlation,
which is insensitive to contrast changes. The RANSAC method is
then used to eliminate the outliers and estimate the homographies.
After geometric registration comes photometric registration. In our
experiments, we used the method in [7].

5. EXPERIMENTS AND RESULTS

We captured a data set of 22 images with a hand-held digital camera.
The exposure rate was changed manually to introduce photometric
diversity into the data set. The resolution enhancement factor is four
and the number of iterations was set to two in all experiments. The
PSF is taken as a Gaussian window of size [7x7] and of variance 1.7.
We use a hat function as in [4] for the certainty function. The results
are shown in Figure 3. For the spatial-only enhancement approach,
we did experiments when the reference is chosen as an over-exposed
image and also when it is chosen as an under-exposed image to show
the robustness of the algorithm. For the spatial and dynamic range
enhancement approach, we created an initial estimate by applying
a standard “HDR from multiple exposures” [4] algorithm. The ini-
tial estimate is then updated iteratively as in [5]. As seen, Figure
3(g) and (h) have higher resolution than the corresponding input im-
ages. Figure 3(h) is the result of the resolution and dynamic range
enhancement algorithm. Notice that both spatial resolution and dy-
namic range are improved. Also note this approach estimates the
irradiance q, which needs to be compressed in dynamic range to dis-
play on limited range displays. Displaying HDR images on limited
range displays is an active research area. Here, we used a gamma
correction to display the image. (The gamma parameter is 0.5.)

6. CONCLUSIONS AND FUTUREWORK

In this paper, we showed how to do SR when the photometric char-
acteristics of the input images are not identical. We showed two pos-
sible approaches, one of them enhancing spatial resolution only, and
the other enhancing both spatial resolution and the dynamic range.
This idea can also be utilized in HDR imaging applications. We
demonstrated that nonlinear photometric modeling should be pre-
ferred to affine photometric modeling. Because of the limited space,
we could not provide further details and discussions on some of the
topics, such as weight function, geometric registration, and tonal
mapping. These details will be provided in later publications.

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Fig. 3. Cropped regions of observations and SR results. (a)-(e) Some
of the bilinearly interpolated input images. (f) SR when (a) is the
reference image. (g) SR when (e) is the reference image. (h) SR
using the technique presented in Section 3.2.
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