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ABSTRACT

The high resolution image restoration method from a down-

sampled low resolution image by using the discrete cosine

transform (DCT) is proposed. The downsampling process is

modeled in matrix form and the similar transformation by the

DCT matrix makes the downsampling matrix to be a sparse

matrix. Then the restored high resolution image can be ex-

pressed in a scalar form by using the similar transformation

and efficiently computed from the low resolution image. Com-

puter simulations show that the proposed method is superior

to the cubic spline interpolation in the high resolution image

restoration performance.

Index Terms— Image restoration, Image resolution, Dis-

crete cosine transforms

1. INTRODUCTION

High resolution (HR) image restorations, which are acquiring

a HR image from downsampled low resolution (LR) images,

attract many attentions [1]. In the HR image restoration meth-

ods, the downsampling process, which expresses the relation

between the pixel values of the LR and HR images, is math-

ematically modeled. When using the charge coupled device

(CCD) to acquire images, we can express the pixel value of

the LR image as the sum of corresponding pixel values of

the HR image [2]. Then the HR image restoration becomes

an inverse problem of the downsampling process. HR image

restoration method from single LR image has been derived [3]

from the analogy with the blurred image restoration method

[4]. In the blurred image restoration, a smoothness constraint

such as the square sum of the discrete Laplacian of the re-

stored image is imposed on the restored image to uniquely

restore the blurred image [4]. Similarly, in the HR image

restoration, the smoothness constraint is imposed on the re-

stored HR image to determine it uniquely from the down-

sampled LR image. However, the direct solution of the HR

image restoration problem requires a large computation time,

because a large scale linear equation needs to be solved [3].

In this paper, we derive the fast computation method for

the HR image restoration by using the discrete cosine trans-

form (DCT). We model the downsampling process in the ab-

sence of the observation noise, perform the similar transfor-

mation of the downsampling matrix into a sparse matrix by

the DCT matrix, and derive the analytical solution to

the restoration problem. Since we can express the analytical

solution in a scalar form, we can efficiently restore the HR

image by using the DCT. We show through computer simu-

lations that the proposed method can be computed as fast as

the cubic spline interpolation method, and that the restoration

capability of the proposed method is superior to that of the

cubic spline interpolation method.

2. MATHEMATICAL FORMULATION OF THE
IMAGE RESTORATION

2.1. Observation model

Let the (2M × 2M) high resolution (HR) image be {xij}
and the (M × M) low resolution (LR) image be {ykl}. The

two images are obtained from the same scene captured by the

different resolution cameras at the same position. The array

structures of the photodetectors of the cameras are described

in Fig. 1. The density of the photodetectors of the HR image

{xij} is 4 times higher than that of the LR image {ykl}. Then

we can express the relation between {xij} and {ykl} as

y = Hx + v, (1)

where x, y, and v are lexicographically ordered vectors con-

sisting of the HR image {xij}, the LR image {ykl}, and the

additive noise with mean zero and variance ε2, respectively.

The (M2×4M2) matrix H represents the filtering and down-

sampling process and has the form

H = Hs ⊗ Hs, (2)

where “⊗” denotes the Kronecker product and Hs is the (M×
2M) matrix defined by

Hs =

⎛⎜⎜⎜⎝
1/2 1/2 0

1/2 1/2
. . .

0 1/2 1/2

⎞⎟⎟⎟⎠ . (3)
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Fig. 1. Array structure of photodetectors: small squares rep-

resent the photodetectors for HR image and hatched squares

represent the ones for LR image

2.2. HR image restoration problem

We shall consider the problem of restoring the HR image x
from the LR image y. Since the problem is ill-defined, we im-

pose a smoothness constraint on x to uniquely determine x.

The constraint we imposed is the square sum of the discrete

Laplacian of x.

The discrete Laplacian of each xij is defined by xi−1,j +
xi,j−1 − 4xij + xi,j+1 + xi+1,j . We here suppose that xijs

at image boundaries i = 0, i = 2M − 1, j = 0, or j =
2M − 1 are under the Neuman boundary condition, that is,

x−1,j = x0,j , xi,−1 = xi,0, x2M,j = x2M−1,j , and xi,2M =
xi,2M−1. The lexicographically ordered vector consisting of

the discrete Laplacians of {xij} is then expressed as [5]

Px = (I ⊗ Ps + Ps ⊗ I)x, (4)

where I is the (2M × 2M) identity matrix, and Ps is the

(2M × 2M) matrix defined by

Ps =

⎛⎜⎜⎜⎜⎜⎝
−1 1 0
1 −2 1

. . .
. . .

. . .

1 −2 1
0 1 −1

⎞⎟⎟⎟⎟⎟⎠ . (5)

Then the square sum of the discrete Laplacians of x can be

represented by the quadratic form xT Qx, where the (4M2 ×
4M2) matrix Q is defined by

Q = PT P

= I ⊗ (PT
s Ps) + 2Ps ⊗ Ps + (PT

s Ps) ⊗ I. (6)

To simplify the restoration problem, we suppose that the

variance of noise ε2 is negligibly small, such as a quantization

error. Then Equation (1) is approximately rewritten as

y = Hx. (7)

Under the condition (7) we shall estimate the HR image x
from the LR image y by minimizing the square sum of the

discrete Laplacian xT Qx. The estimation problem is formu-

lated as

arg min
x

xT Qx subject to y = Hx. (8)

We solve the problem (8) by using the Lagrange multiplier

method. Let the Lagrangian L be

L(x,λ) = xT Qx + λT (y − Hx), (9)

where λ = (λ00, λ01, · · · , λ0,M−1, λ10, · · · , λM−1,M−1)T

is the M2 dimensional vector consisting of the Lagrange mul-

tipliers. Then we have

∂

∂x
L(x,λ) = 2Qx − HT λ = 0 (10)

∂

∂λ
L(x,λ) = y − Hx = 0. (11)

Since Q1 = PT P1 = 0, the matrix Q is found to be singu-

lar. Therefore, it is difficult to straightly solve the system of

equations (10) and (11). We thus perform the similar transfor-

mations of Q and H by the discrete cosine transform (DCT)

matrix, and we show that they become sparse matrices.

2.3. Similar transformations of Q and H

We put the one dimensional (1-D) DCT matrix of size M as

WM . The ij element of WM is

(WM )ij =
√

2√
M

c(i) cos
(

πi(j + 0.5)
M

)
(12)

with

c(i) =

{
1√
2

i = 0

1 otherwise.
(13)

We should note that WM is a unitary matrix. We transform the

variables x, y, and λ into x̃, ỹ, and λ̃ by the two dimensional

(2-D) DCT matrix as follows:

x̃ = (W2M ⊗ W2M )x (14)

ỹ = (WM ⊗ WM )y (15)

λ̃ = (WM ⊗ WM )λ. (16)

The equations (10) and (11) can be rewritten as

2Q̃x̃ − H̃T λ̃ = 0 (17)

ỹ − H̃x̃ = 0, (18)
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where the matrices Q̃ and H̃ are the similar transformations

of Q and H defined by

Q̃ = (W2M ⊗ W2M )Q(W2M ⊗ W2M )T (19)

H̃ = (WM ⊗ WM )H(W2M ⊗ W2M )T . (20)

We shall show that Q̃ and H̃ are sparse matrices.

We note that Ps can be diagonalized by the DCT matrix

as [5]

P̃s = W2MPsW
T
2M = diag{p̃0, p̃0, · · · , p̃2M−1}, (21)

with

p̃i = 2
(

1 − cos
(

πi

2M

))
. (22)

Using (6) and (21), we can straightforwardly show that Q̃ is a

diagonal matrix as follows:

Q̃ = I ⊗ (P̃T
s P̃s) + 2P̃s ⊗ P̃s + (P̃T

s P̃s) ⊗ I

= diag{q̃00, q̃01, · · · , q̃0,2M−1, q̃10, · · · , q̃2M−1,2M−1}
(23)

with

q̃ij = (p̃i + p̃j)2. (24)

We can rewrite H̃ as

H̃ = H̃s ⊗ H̃s, (25)

where we put

H̃s = WMHsW
T
2M

=

⎛⎜⎜⎜⎝
h̃0 0

h̃1 h̃2M−1

. . . . .
.

h̃M−1 0 h̃M+1

⎞⎟⎟⎟⎠ ,

(26)

with

h̃i =

⎧⎪⎨⎪⎩
( 1√

2
) cos( πi

4M ) 0 ≤ i ≤ M − 1

0 i = M, 2M

−( 1√
2
) cos( πi

4M ) M + 1 ≤ i ≤ 2M − 1.

(27)

We see from (23) and (26) that Q̃ and H̃ are sparse matrices.

2.4. Fast computation by the DCT

Here we show that the solution of the system of Equations

(17) and (18) can be written in a scalar form. Using (26), we

can rewrite Equation (18) in a scalar form as

ỹkl =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h̃0h̃0x̃00 k = l = 0
h̃kh̃lx̃kl + h̃kh̃2M−lx̃k,2M−l

+h̃2M−kh̃lx̃2M−k,l

+h̃2M−kh̃2M−lx̃2M−k,2M−l otherwise.

(28)

From the top equation in (28), we can straightforwardly de-

termine x̃00 as

x̃00 =
ỹ00

h̃2
0

. (29)

Therefore, we shall consider the case of i �= 0 or j �= 0 in the

following. Substituting (23) and (25) into (17) gives

2q̃ij x̃ij =

{
0 i = M or j = M

h̃ih̃j λ̃κ(i)κ(j) otherwise,
(30)

where we put

κ(i) =

{
i 0 ≤ i ≤ M

2M − i M + 1 ≤ i ≤ 2M − 1.
(31)

Since q̃ij �= 0, Equation (30) is rewritten as

x̃ij =

{
0 i = M or j = M
h̃ih̃j λ̃κ(i)κ(j)

2q̃ij
otherwise.

(32)

Putting (32) into the bottom equation of (28), we have

λ̃kl =
2ỹkl

Dkl
, (33)

where we put

Dkl = h̃2
kh̃2

l q̃
−1
kl + h̃2

kh̃2
2M−lq̃

−1
k,2M−l + h̃2

2M−kh̃2
l q̃

−1
2M−k,l

+ h̃2
2M−kh̃2

2M−lq̃
−1
2M−k,2M−l. (34)

Here we used the property that Dκ(i),κ(j) = Dij for 0 ≤
i, j ≤ 2M − 1. Substituting (33) into (30), and summarizing

it together with the result for the case i = j = 0 given by

Equation (29), we have

x̃ij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ỹ00

h̃0h̃0

i = j = 0

0 i = M or j = M

h̃ih̃j

q̃ijDij
ỹκ(i)κ(j) otherwise.

(35)

This equation shows that the analytical solution of the HR

image restoration problem can be written in a scalar form.

Now we describe the algorithm of the proposed method in

Fig. 2. We can compute x̃ from ỹ by using (35) in O(M2).
The DCT of y and the inverse DCT of x̃ can be computed

in O(M2 log M). Therefore, the proposed method can com-

pute the HR image x from the LR image y in O(M2 log M)
processing time.

3. SIMULATION RESULTS

In this section, we compared the restoration performances of

the cubic spline interpolation and proposed methods. All sim-

ulations were done on an IBM PC/AT compatible computer
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1. Compute the DCT of y by Equation (15) to ob-

tain ỹ
2. Compute x̃ from ỹ by Equation (35)

3. Compute the inverse DCT of x̃ by Equation (14)

to obtain x

Fig. 2. Algorithm of the proposed method

with an Intel Pentium 4 2.4 GHz and 512 Mbyte DRAM’s.

We used eight images of size (256×256) with 8 bit grayscale.

We generated the (128 × 128) LR image y from the original

(256× 256) HR image x by using Equation (7). Then we re-

stored the (256 × 256) HR image from y by the cubic spline

interpolation and the proposed methods. Fig. 3 shows the re-

stored images of “barbara”. The restored image by the pro-

posed method seems to be more “high-passed” than the other.

We then quantitatively measured the restoration performance

of each method by the peak signal to noise ratio (PSNR) de-

fined by

PSNR = 10 log10

(
2552

1
4M2

∑2M−1
i=0

∑2M−1
j=0 e2

ij

)
, (36)

where eij is the difference of the pixel value between the orig-

inal and restored images. The PSNRs of the proposed method

were superior to that of the cubic spline interpolation method

in all the eight images we tested. The average PSNRs of

the proposed and the cubic spline interpolation method were

28.36 dB and 28.08 dB, respectively. The computation times

of the proposed and cubic spline interpolation methods were

0.011 sec and 0.0052 sec, respectively. The proposed method

achieves better restoration performance at the expense of an

increase of computation time.

(a)

(b)

Fig. 3. Restored images of “barbara” by using (a) the pro-

posed method (PSNR = 28.06dB) and (b) the cubic spline in-

terpolation method (PSNR = 27.86dB)

4. CONCLUSION

We derived the HR image restoration method from the down-

sampled LR image by using the DCT. The restoration perfor-

mance of the proposed method is superior to that of the cubic

spline interpolation at the expense of an increase of computa-

tion time.
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