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ABSTRACT 

 
This paper proposes a novel image super-resolution (SR) algorithm 
in a robust estimation framework. SR estimation is formulated as 
an optimization (minimization) problem whose objective function 
is based on robust M-estimators and its solution yields the SR 
output. The novelty of the proposed scheme lies in the selection of 
this class of estimators and the incorporation of information-
theoretic similarity measures. Such a choice helps in dealing with 
violations (outliers) of the assumed mathematical model that 
generated the low-resolution images from the “unknown” high-
resolution one. The proposed approach results in high-resolution 
images with no estimation artifacts. Experimental results 
demonstrate its superior performance in comparison to both L1 and 
L2 estimation in terms of robustness and speed of convergence.  
 

Index Terms— Robust M-estimators, super-resolution, 
information-theoretic divergence 
 

1. INTRODUCTION 
 
Image super-resolution (SR) has attracted a lot of attention 
recently as a way of producing high-resolution images with 
better details, by combining the information in a sequence of 
sub-pixel shifted low-resolution (LR) images. It can be 
considered as a cheap alternative to costly high-precision 
optics, which is, however, limited by sensor noise. Super-
resolution can have a wide range of applications ranging from 
consumer electronics, to surveillance and military applications. 
Most SR algorithms assume a mathematical model for the 
imaging system, which could have generated the sequence of 
LR frames from the unknown high-resolution image. However, 
violations to the assumed model occur because of the 
approximate nature of the model, inaccuracies in the model 
parameters (such as blur and/or motion parameters), and/or 
accidental scene changes. For instance, the model could assume 
translational motion while, in reality, a more complex motion 
(e.g. affine) may have taken place. These violations even small 
in number can be detrimental to SR estimation and result in 
estimation artifacts.  

Robust statistics [1-2] have emerged as a family of theories 
and techniques for estimation while dealing with deviations 
from idealized model assumptions. In particular, robust M-
estimators have been found very effective in many image 
processing applications such as optical flow estimation [8], 

robust denoising [9] and robust anisotropic diffusion [10], just 
to name a few. However, to the best of our knowledge, they 
have not been applied to the problem of image super-resolution. 
Motivated by the robustness of redescending M-estimators [1-
2], we attempt to address the problem of image SR in a robust 
estimation framework.    
 

2. PROBLEM FORMULATION 
 
In this paper, we use the following observation model 
considered by many super-resolution algorithms [such as 3-6]: 

     Y DHF X Zk k                                   (1) 
where D, H, and Fk represent the downsampling, burring and 
warping operations; respectively. Downsampling is assumed to 
be by a constant factor in both the x and y directions. This 
factor will be referred to as r, the resolution enhancement 
factor. X is the unknown SR output, Yk is the kth LR 
observation (frame), and Z is a noise term. Recasting the 
problem in the generalized M-estimation framework, the SR 
output is the solution of the following minimization problem: 

       
1 1

  *

X X
X argmin (DHF X Y ) argmin (E )

N N

k k k
k k

      (2) 

where N is the number of LR frames, Ek is the projection error 
related to the kth LR frame, and is an even-symmetric 
function, which has a unique minimum at zero and satisfies the 
condition: 

   
1

 (DHF ) (E ) 0
N T

k k
k

                           (3) 

This last condition is the result of minimizing with respect to 
X by setting its partial derivative equal to zero. is the first 
derivative of with respect to E, and is referred to as the 
influence function [1].  

Many references, such as [3], have addressed the solution 
of (2) as a least squares (LS) estimation problem using the L2 

error norm 2
21 1

*

X X
X argmin (E ) argmin E

N N

k k
k k

. The 

solution can be found iteratively using the steepest descent 
algorithm as follows: 

1

1 1
2 2X X (DHF ) (E ) X (DHF ) E

N Nn n T n n T n
k k k k

k k
      (4) 

where is a step size parameter. However, LS estimation 
exhibits a poor performance in the presence of model 
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violations, as shown in [5]. In fact, in [4] Zomet el al adopted a 
post-processing step to remove estimation artifacts after the LS 
solution is obtained. The reason behind the non-robustness of 
the L2-estimator lies in its influence function (i.e., its first 
derivative ). As shown in the equation above,  is linear and 
increases without bound assigning large weights to large errors. 
As a first step toward robustifying SR estimation, Farsiu et al 
[5-6] proposed the use of the L1-estimator as an alternative to 

LS estimation 11 1

*

X X
X argmin (E ) argmin E

N N

k k
k k

. The 

solution can also be found using the steepest descent algorithm 
[5] as follows: 

1

1 1
X X (DHF ) (E ) X (DHF ) sign(E )

N Nn n T n n T n
k k k k

k k
(5)                        

As shown, the L1 influence function  is the Signum function. 
Therefore, all errors (small or large) are assigned the same 
weights either 1 or -1, depending only on their sign. The L1 
error norm is definitely more robust than the L2 in the presence 
of outliers. However, because of its constant-valued influence 
function, the resulting SR solution suffers from various 
artifacts. This is especially the case when the problem is 
underdetermined (i.e. there are fewer LR frames than the 
required minimum number of frames to fill-in the missing 
pixels in the HR image), and a regularization term is required to 
stabilize the solution. 

 
3. THE PROPOSED SR ESTIMATION ALGORITHM 

 
To improve the robustness of SR estimation, we propose the 
use of an objective function based on a specific class of robust 
M-estimators, which have redescending influence functions 
(redescending M-estimators [1]). For these estimators, the 
influence curve  increases up to a given point referred to as 
the outlier threshold ( ) after which it starts to decrease 
(redescends) as the error grows. Because of this behavior, large 
errors falling beyond the outlier threshold are assigned weights 
that decrease as the error increases, thus providing a soft outlier 
rejection rule. Of all the redescending M-estimators, we are 
particularly interested in estimators whose influence functions 
have only one parameter ( ), which will be determined from 
the available observations as shown later. Examples of these 
estimators are the Lorentzian, Geman and McClure and 
Tukey’s biweight functions [1]. In this paper, only the 
Lorentzian estimator is demonstrated due to space limitations. 
Fig.1. (a) and (b) depict an example of a redescending estimator 

 (the Lorentzian estimator) and the corresponding influence 
function  for 50 . 
 
3.1. The Robust Objective Function 
 
Recasting the problem of super-resolution using redescending 
M-estimators, the SR output is given by 

 
1

 *

X
X argmin (E ; )

N

k k k
k

                      (6) 

where k is the objective function term corresponding to the 
kth LR frame and k is the corresponding outlier threshold. The 

Lorentzian estimator [1] has an error norm given by 
2 2 2( ; ) log( / )e e . For redescending M-estimators a one-

step (one iteration) estimation using Newton’s algorithm is 
possible, provided that both the initial guess and the outlier 
threshold are robustly selected [1-2]. Unfortunately, these two 
conditions cannot be met in general and an iterative scheme to 
solve (6) is inevitable. Two computational issues related to 
redescending M-estimators [1], are addressed however; 1) the 
non-uniqueness of the solution (because of the redescending , 
which goes to zero for very large error values as shown in 
Fig.1.b) and 2) the non-convexity of the cost function in (6). To 
overcome the first issue, a proper initial guess of X is estimated 
such that the resulting projection errors are not large enough to 
drive to zero. In our experiments, we have estimated the 
initial guess through bilinear interpolation of the first LR frame. 
And to avoid getting trapped in local minima, we chose to 
apply the graduated nonconvexity (GNC) algorithm [11] in 
conjunction with successive over-relaxation (SOR) to minimize 
(6). To find the solution of (6) iteratively, the proposed update 
equation is: 

  1

1
 X X (DHF ) (E ; )

N Ln n T nk
k k k

k k

e
T

             (7) 

where  is the SOR parameter (1 2 ) and kT is the 
maximum value of the second derivative of k , which is 

22 k/ for the Lorentzian estimator. The term (DHF )T
k is the 

backprojection operator from the low-resolution grid to the 
high-resolution one. The term (E ; )k k is referred to as the 
local influence vector because for the ith location on the low-
resolution grid, the Lorentzian influence function is evaluated 
for ,k ie ( ith value in Ek ). The factor  Lke is explained below. 
 
3.2. Estimation of the Outlier Thresholds k  
 
After the initial SR estimate X0 is obtained (through bilinear 
interpolation of the first (reference) LR frame), the projection 
errors 0 0E DHF X Yk k k are estimated. For the reference frame, 
the outlier threshold 1 is set to the maximum absolute error 

value in 0
1E . The reason it is selected this way is that the first 

LR frame is considered as a frame without any outliers and its 
corresponding projection errors are all accepted toward the 
estimation of the SR output. This is a reasonable assumption 
since in image SR the goal is usually to enhance the resolution 
of the first frame. To estimate the outlier threshold for each of 
the other LR frames, we propose an information-theoretic 
divergence based strategy, which is described in what follows. 
First, the distribution (normalized histogram) of the projection 
error related to each of the LR frames 0Ek kh h is computed. 

Then, a divergence (i.e., dissimilarity) measure between the 
error distribution of each of the LR frames and the reference 
frame error distribution is calculated. We have chosen the L-
divergence proposed in [12] because it is symmetric, bounded 
and it does not require absolute continuity and common support 
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of the distributions [12]. A soft decision rule for calculating the 
outlier threshold for each frame, based on the divergence 
measure is then adopted. The outlier threshold for the kth frame 
is calculated as  

1  2 3Lk
k e k N, , , ...., , where kL is the 

divergence (dissimilarity) between the two distributions 
kh and 1h , and is calculated as in [12]. kL has a minimum value 

of zero [12]. Therefore, if the two distributions are 
identical, k will be equal to 1 . The constant controls the 
decay of the weighting exponential and is calculated from 

 
1 1

Le Lmax
min min maxlog( / ) /  

where min is the minimum outlier threshold value assigned at 
the maximum divergence maxL . The L-divergence has an upper 
bound of 2 as shown in [12]. However, this maximum is never 
attained unless the two distributions are completely dissimilar. 
Through extensive experiments, we found that reasonable 
values for maxL  and min are 1 and 0.01, respectively. The 

factor  Lke in (7) is included to guarantee that all k have the 
same maximum value at their corresponding k (as shown in 
Fig.1.e). The strategy outlined above to estimate the outlier 
thresholds, embeds a soft outlier rejection rule in the robust 
formulation in (7). It is worth noting that the proposed strategy 
only assumes stationary scenes (no moving objects). This 
assumption can, however, be relaxed by pursuing a region-
based version. 
 

4. EXPERIMENTAL RESULTS 
 
Both synthetic and real experiments are considered in this 
section. In the synthetic experiment as in [5], we simulated a set 
of LR frames from the SMU Helmet image through shifting it 
by all the 16 possible integer shifts in a 4 4 square on the high-
resolution grid, blurring by a Gaussian Kernel of size 5 5 with 
a standard deviation of 1, and then downsampling by a factor of 
4 in both directions. Then, frame # 4 is rotated by 200 CCW and 
frame # 10 is zoomed in by a factor of 1.2 (in addition to the 
shifts). Gaussian noise was also added so that the SNR is 30 
dB. During estimation pure translation is assumed and the 
blurring kernel is assumed to be Gaussian of size 3 3 of 
standard deviation of 1, to simulate both motion and blur 
estimation errors. In this experiment, the resolution 
enhancement factor is 4 (i.e., r = 4). For the real experiment, 
the Books sequence was captured by a Canon PowerShot A400 
and 10 frames were used in the estimation. Translational 
motion is assumed (although the sequence undergoes an affine 
motion) and the algorithm in [7] is used to estimate the motion 
vector between each of the LR frames and the first (reference 
frame). The blurring kernel is assumed to be Gaussian of size 
3 3 and a unity standard deviation. In this experiment, r = 2.  

Fig.1 and Fig.2 depict the 4  and 2  SR estimation results 
for the synthetic and real data, respectively. The SOR 
parameter in (7) is set to 1.5. Steepest descent is pursued to 
minimize the L1 and L2 cost functions (equations (4) and (5)), 
and the step size is set to 1. Form these results, it is shown 
that the L1 estimator is more robust than the L2 estimator is, but 
it results in blurry SR solutions with estimation artifacts. And, a 

regularization term must be incorporated in the cost function to 
stabilize the solution. On the other hand, the proposed 
algorithm results in crisp, artifact-free high-resolution images, 
without the use of regularization. It is worth noting the 
proposed scheme converges to the solution only within a few 
iterations (typically from 6 to 12). For the L1 and L2 estimators, 
the convergence depends on the step size parameter . For the 
selected step sizes, the L1 and L2 estimators converged in 30 
and 40 iterations respectively, in the first experiment and in 25 
and 50  iterations respectively, in the second experiment.   
 

5. CONCLUSIONS  
 
In this paper, we introduced a new SR algorithm in a robust 
estimation framework. Two fundamental features of the 
algorithm are 1) robustness to model violations (outliers) and 2) 
fast convergence. The proposed framework outperforms L1 and 
L2 estimation, in the absence of a regularization term in the 
objective function. We are currently investigating the 
incorporation of a robust regularization term based on 
redescending M-estimators to address the ill posedness of SR 
estimation when there is insufficient number of LR frames, 
which is typical in real video sequences.   
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Fig.1  4× Super-resolution estimation results for SMU Helmet image  
(a) Lorentzian estimator for 50 , (b) Lorentzian influence function for 50 , (c) Error distributions of the green component, 

 (d) L-divergence values for the three color components, (e) Outlier thresholds for the three color components,  
(f) Influence curves for the green component, (g) First LR frame, (h) L2 estimate, (i) L1 estimate,  

(j) Lorentzian estimate, (k) Bottom left corner of (i), (l) Bottom left corner of (j) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2  2×Super-resolution estimation results for the Books sequence 

(a) First LR frame, (b) L2 estimate, (c) L1 estimate, (d) Lorentzian estimate, (e) Top part of (c), (f) Top part of (d)  
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