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ABSTRACT

A major problem in medical ultrasonography is the inherent cor-
ruption of ultrasound images with speckle noise that severely ham-
pers the diagnosis and automatic image processing tasks. In this
paper, an ef cient wavelet-based method is proposed for despeck-
ling medical ultrasound images. A closed-form Bayesian wavelet-
based maximum a posteriori denoiser is developed in a homomor-
phic framework, based on modelling the wavelet coef cients of the
log-transform of the re ectivity with a symmetric normal inverse
Gaussian (SNIG) prior. A simple method is presented for obtain-
ing the parameters of the SNIG prior using local neighbors. Thus,
the proposed method is spatially adaptive. Experiments are carried
out using synthetically speckled and real ultrasound images, and the
results show that the proposed method performs better than several
other existing methods in terms of the signal-to-noise ratio and vi-
sual quality.

Index Terms— Ultrasound image, speckle noise, wavelet trans-
form, symmetric normal inverse Gaussian distribution, Bayesian max-
imum a posteriori estimator.

1. INTRODUCTION

Ultrasonography is a popular diagnostic tool used for medical in-
vestigations. It is noninvasive, cost-effective, accurate and practi-
cally harmless to human body. Unfortunately, ultrasound images
are inherently corrupted with speckle noise that makes it dif cult to
discriminate diagnostically important details such as cysts in breast
imagery, and complicates the task of automatic image processing.
Thus, reduction of speckle is a major problem in the processing
of medical ultrasound images. Various spatial domain lters us-
ing local statistics have been proposed in the literature in order to
reduce speckle noise especially in synthetic aperture radar and med-
ical ultrasound images [1, 2]. However, these lters often suppress
speckle at the expense of blurring the image details. Jain [3] pro-
posed a homomorphic approach wherein the multiplicative speckle
noise is converted into an additive noise via logarithmic transfor-
mation of the noisy image. Next, a Wiener lter is applied on the
log-transformed image. The despeckled image is obtained by ap-
plying an exponential operation on the ltered output. However,
the process essentially being low-pass ltering, blurs many impor-
tant details of the image. In recent years, a number of multi-scale
wavelet-based methods have been developed for despeckling medi-
cal ultrasound images [4–7]. Achim et al. [4] proposed a homomor-
phic method in which the wavelet coef cients of the log-transformed
ultrasound image are denoised by a Bayesian minimum mean abso-

lute error (MMAE) estimator which is developed using a symmetric
alpha-stable probability density function (PDF) for modelling the
coef cients of the log-transformed re ectivity. However, the lack
of a closed-form expression for the alpha-stable PDF hampers pa-
rameter estimation from the noisy data and increases the complexity
of the Bayesian estimation process [8]. In [5], a Bayesian maxi-
mum a posteriori (MAP) estimator is developed by using a Gaussian
PDF for locally modelling the signal coef cients, whereas the log-
transformed speckle with a Rayleigh PDF. Gupta et al. [6] have de-
veloped a homomorphic method for simultaneous compression and
denoising of ultrasound images by modelling the signal coef cients
using the generalized Gaussian (GG) PDF. Pizurica et al. [7] have
proposed a robust multi-scale method for despeckling the ultrasound
images by employing a novel generalized likelihood ratio that makes
use of the local neighbors in deriving the ratio. In this paper, an
ef cient wavelet-based method for despeckling medical ultrasound
images is proposed. The wavelet coef cients of the log-transformed
re ectivity are modelled with a symmetric normal inverse Gaussian
(SNIG) PDF while those of the log-transformed noise are assumed
to be Gaussian distributed. A Bayesian MAP estimator is obtained in
closed-form using the assumed statistics. In order to incorporate the
spatial dependency of the wavelet coef cients, the parameters of the
SNIG prior are estimated using local neighbors. A simple method is
presented for estimating the SNIG parameters.

2. PROBLEM FORMULATION

Let G(k, l), X(k, l) and N(k, l) denote the (k, l)-th pixel of an ul-
trasound image, the corresponding tissue-re ectivity and the speckle
noise. Assuming the speckle noise to be fully developed and inde-
pendent of X, we can write

G(k, l) = X(k, l)N(k, l) + ξ(k, l) (1)

where ξ(k, l) is an additive noise (such as sensor noise) [3]. In prac-
tice, the additive noise can be ignored [4], and thus, (1) becomes

G(k, l) = X(k, l)N(k, l) (2)

A fully developed speckle is often modelled by a Rayleigh distribu-
tion [6]. The speckle noise can be simulated by low-pass ltering a
complex Gaussian random eld and then taking the magnitude of the
ltered output. A common practice is to perform the ltering with

a 3 × 3 window, since such a short-term correlation is suf cient for
modelling real ultrasound images [7]. To convert the multiplicative
noise to an additive one, the noisy image is log-transformed yielding

Gl(k, l) = Xl(k, l) + Nl(k, l) (3)
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where Gl, Xl and Nl are the logarithms of G, X, and N , respec-
tively. The distribution of the log-transformed noise can be suf -
ciently approximated by a Gaussian distribution for a fully devel-
oped speckle [6]. Even if the noise is not fully developed, the corre-
sponding distribution can still be considered Gaussian for practical
purposes [6].
The conventional multi-scale critically sampled discrete wavelet trans-
form (DWT) is not shift-invariant, thus leading to pseudo-Gibbs phe-
nomena in the denoised image such as undershoots and overshoots
at the locations of sharp signal transitions, and lacks good direction-
ality [9]. Recently, the dual-tree complex wavelet transform (DT-
CWT) [9] has been proposed in order to overcome these problems.
The DT-CWT consists of two parallel real DWTs where the rst
DWT gives the real part and the second one the imaginary part of
the complex coef cient. A single stage decomposition of an image
provides seven subbands with one approximation subband, and six
detail subbands, three containing the real parts whereas the other
three the corresponding imaginary parts of the complex wavelet co-
ef cients. For a J level decomposition, the corresponding detail
subbands at level q are denoted as LHRe

q , LHIm
q , HLRe

q , HLIm
q ,

HHRe
q , and HHIm

q , where q = 1, 2, · · · , J . The DT-CWT is re-
dundant, nearly shift-invariant, provides better directional and rota-
tional selectivity, and is computationally ef cient. Due to these ad-
vantages, the DT-CWT is employed in the proposed method. Since
the wavelet transform is a linear operation, after applying the DT-
CWT on (3), we obtain

gq(k, l) = xq(k, l) + ηq(k, l) (4)

where gq(k, l), xq(k, l) and ηq(k, l) denote the (k, l)-th wavelet co-
ef cient at level q of a particular detail subband of the DT-CWT of
Gl, Xl and Nl, respectively. For notational simplicity, we will drop
the subscripts and use only g, x and η. After the wavelet decom-
position, the problem is to reduce the noise term η and preserve the
signal, x as much as possible.

3. THE BAYESIANMAP ESTIMATOR

In order to reduce the noise in the wavelet domain, a Bayesian MAP
estimator is developed using the symmetric inverse Gaussian (SNIG)
PDF for modelling the signal coef cients. The SNIG PDF is ex-
pressed as

Px(x) = A
K1(α

√
δ2 + x2)√

δ2 + x2
(5)

where A = αδ exp(δα)
π

, and K1 is the modi ed Bessel function of the
second kind with index 1 [10]. Among the two parameters, α con-
trols the shape of the distribution and δ is a scale parameter. In order
to illustrate the ef cacy of the proposed prior, the GG and SNIG
PDFs are tted to the wavelet coef cients of the subband HHRe

1

for a log-transformed ultrasound image previously denoised by the
method of [7]. The ultrasound image and the denoising software
are obtained from http://www.telin.tue.nl/ sanja/. Fig. 1 (a) shows
the empirical PDF of the wavelet coef cients along with the tted
GG and NIG PDFs. The corresponding values of the Kolmogorov-
Smirnov (KS) statistic [11] are also obtained as 0.0429 and 0.0614
for the NIG and GG PDFs, respectively. From Fig. 1 as well as from
the values of the KS statistic, it is clear that the NIG prior provides
a better t to the empirical distribution then that achieved by the
GG PDF. Since the DT-CWT consists of two real orthogonal DWTs,
we assume the distribution of the noise coef cients in each DWT is
Gaussian with zero mean and standard deviation of ση , and denote
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Fig. 1. Empirical PDF of the wavelet coef cients in the subband
HHRe

1 of the log-transform of a previously denoised ultrasound im-
age (broken line), and the corresponding tted NIG (dotted line), and
GG PDFs (solid line).

it by Pη(η). The Bayesian MAP estimator is given by [8]

x̂(g) = arg max Pη(g − x)Px(x) (6)

To obtain the MAP estimate, the derivative of the logarithm of the
argument in (6) is set to zero resulting in

x− g

σ2
+ p′(x) = 0 (7)

where p(x) = − ln Px(x) and p′(x) = ∂
∂x

p(x). Using the ap-
proach proposed by Hyvarinen [12], an approximate solution of (7)
is obtained as

x̂(g) = sign(g)max(|g| − σ2
η|B|, 0) (8)

where

B =
2g

δ2 + g2
+

αg√
δ2 + g2

K0(α
√

δ2 + g2)

K1(α
√

δ2 + g2)
(9)

We need to estimate the parameters α, δ and ση to obtain the MAP
estimates. In order to take speckle correlation into account, for each
real DWT tree of the DT-CWT, the corresponding value of ση is
obtained using the coef cients in the corresponding nest subbands
of diagonal orientation as

ση = C
D1 + D2

2
(10)

where D1 = MAD(g(k, l))/0.6745), g(k, l) ∈ HH1, and D2 =
MAD(g(k, l))/0.6745), g(k, l) ∈ HH2, and C is a smoothing
factor. To obtain the SNIG parameters for the (k, l)-th coef cient,
the estimates of the second and fourth order signal moments, denoted
by m̂2(k, l) and m̂4(k, l), respectively, are obtained as

m̂2(k, l) = max((m2(k, l)− σ2
η), 0) (11)

m̂4(k, l) = max((m4(k, l)− 6m̂2(k, l)σ2
η − 3σ4

η), 0)

The values of m2(k, l) and m4(k, l) are obtained using a D × D
square window as

m2(k, l) =
1

D2

(M)/2∑
i=−(M)/2

(M)/2∑
j=−(M)/2

g(k − i, l − j)2 (12)
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m4(k, l) =
1

D2

(M)/2∑
i=−(M)/2

(M)/2∑
j=−(M)/2

g(k − i, l − j)4 (13)

where M = D−1. Next, the corresponding second and fourth order
cumulants, denoted by K̂2 and K̂4, respectively, are obtained as

K̂2 = m̂2

K̂4 = max((m̂4 − 3m̂2
2), 0) (14)

The parameters α and δ are estimated as

α =

√
3
K̂2

K̂4

, δ = αK̂2 (15)

The proposed method can be summarized as follows:

1. Perform log-transformation of the ultrasound image.

2. Apply the DT-CWT on the log-transformed image.

3. Obtain the Bayesian MAP estimates using (8).

4. Obtain the inverse-transform of the MAP estimates.

5. Perform an exponential transformation of the quantities ob-
tained in Step 4.

4. SIMULATION RESULTS

Simulations are carried out in MATLAB in order to study the per-
formance of the proposed method using synthetically speckled and
real medical ultrasound images. The performance of the proposed
method is compared with those of [7], Bayes-shrink [13], and ho-
momorphic Wiener lter [3]. The value of D in (12) and (13) is
set to 9 and 13 for the subbands at levels 4 and 3, respectively, and
to 23 for the subbands at levels 1 and 2. The smoothing factor C
in (10) is set to 1.5. The rst set of synthetically speckled images
is obtained by corrupting the classical Lena image of 256 × 256
pixels with noise having various standard deviations. A real ultra-
sound image obtained from (http://www.telin.tue.nl/ sanja/) is de-
noised by the method of [7], and then corrupted for various noise
standard deviations to obtain the second set of synthetically speck-
led images. The results of [7] are obtained by using the software
available in the same website with optimal parameters. Finally, ex-
periments are carried out with a 256× 256 excerpt of an ultrasound
image of intraductal papilloma obtained from an online depository
(ftp://wuerlim.wustl.edu/pub/dicom/images/.). The signal-to-noise
ratio (SNR) [7] is used as the objective performance criterion for the
synthetically speckled images. The values of SNR for various meth-
ods are provided in Tables I and II. Note that the proposed method
gives better values of SNR compared to that obtained by other tech-
niques especially at high noise levels. The denoised images obtained
by applying the various methods on a synthetically speckled image
from the second set (noise standard deviation of 0.5) are shown in
Fig. 2. Images obtained by denoising a real ultrasound image with
various methods are shown in Fig. 3. It can be observed from Figs.
2 and 3 that the proposed method not only provides an effective
speckle suppression, but also preserves the diagnostically important
details. In contrast, the homomorphic Wiener lter blurs the im-
portant signal features, whereas the images obtained by the Bayes-
shrink [13] method are still noisy. In addition, the proposed method
is computationally faster than the method in [7]. For example, in
order to process an image of 256× 256 pixels on a 2.4GHz Pentium
IV machine, the average CPU time required by the proposed method
and the method of [7] are 1.20 and 3.59 seconds, respectively.

Table 1. SNR (in dB) for the rst set of synthetically speckled im-
ages

Std. of Proposed Method Bayes-shrink Homomorphic
noise method in [7] [13] Wiener [3]
0.2 21.72 21.32 21.43 13.81
0.3 19.44 19.13 18.21 13.61
0.4 17.89 17.30 15.72 13.42
0.5 16.57 15.72 14.06 13.10
0.6 15.39 14.39 12.55 12.79
0.7 14.53 13.29 11.24 12.47
0.8 13.62 12.38 10.04 12.13
0.9 12.90 11.47 9.25 11.74
1 12.18 10.61 8.41 11.30

Table 2. SNR (in dB) for the second set of synthetically speckled
images

Std. of Proposed Method Bayes-shrink Homomorphic
noise method in [7] [13] Wiener [3]
0.2 22.41 22.18 22.58 12.67
0.3 19.65 19.39 19.20 12.56
0.4 17.71 17.26 16.83 12.42
0.5 16.29 15.59 15.07 12.26
0.6 15.06 14.16 13.56 12.06
0.7 14.16 12.88 12.30 11.82
0.8 13.29 11.91 11.32 11.60
0.9 12.57 10.99 10.32 11.32
1 11.90 10.11 9.41 11.06

5. CONCLUSION

In this paper, we have proposed a spatially adaptive wavelet-method
based on the symmetric normal inverse Gaussian (SNIG) PDF for
despeckling medical ultrasound images. In this method, the real and
imaginary parts of the dual-tree complex wavelet coef cients of the
log-transform of the underlying tissue re ectivity have been mod-
elled by using the SNIG PDF, whereas those of the log-transformed
speckle with a zero-mean Gaussian PDF. A closed-form Bayesian
MAP estimator has been obtained using the assumed prior distribu-
tions. Spatial adaptation in wavelet domain is provided by estimat-
ing the parameters of the SNIG distribution using local neighbors.
A simple method has been provided for obtaining the parameters of
the prior distributions. The proposed technique is self suf cient in
the sense that the parameters of the prior PDFs are obtained from
the noisy data. Experiments have been carried out using both syn-
thetically speckled and real ultrasound images to compare the per-
formance of the proposed technique with some of the existing meth-
ods. The simulation results have shown that the proposed method
performs better than others in terms of SNR for the synthetically
speckled images. For the real ultrasound and synthetically speckled
images, it has been observed that the proposed method ensures an
effective suppression of speckle noise while retaining diagnostically
important details.
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