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ABSTRACT

Nonlinear bistable double-well stochastic resonance systems

have been successfully used for one-dimensional signal pro-

cessing, based on the concept of parameter-tuning stochas-

tic resonance. This paper will investigate the applications of

parameter-tuning stochastic resonance in image processing.

First, a two-dimensional stochastic resonance system is intro-

duced as a nonlinear filter for image processing. The equation

satisfied by the dynamic probability density function of the

images processed by this stochastic resonance filter and its so-

lutions are then discussed. Finally, this nonlinear filter is used

to process a black-white image corrupted by additive white

Gaussian noise to reveal the possibility to extend the concept

of parameter-tuning stochastic resonance to two-dimensional

cases. This provides an innovative approach for image pro-

cessing.

Index Terms— Image Filtering, Stochastic Systems

1. INTRODUCTION

Image processing has been widely applied to the improve-

ment on image quality. In order to enhance the images cor-

rupted by noise, most of the denosing algorithms will try to

remove the noise from the images. Stochastic resonance, on

the contrary, is a phenomenon that the noise can be used to

enhance the system performance. The concept of stochastic

resonance was first proposed by Benzi in 1981 [1]. It has

wide-range application areas, such as in physics, chemistry,

biomedical sciences, and engineering systems [2]. Balance

control [3] and speech understanding [4] are two of its ap-

plications. Signal detection [5], signal transmission [6], and

signal estimation [7] are its applications in signal process-

ing. The noise can become beneficial to the systems, only

when the synchronization between the input signal and the

noise occurs. This can be realized by either the traditional

method (adding noise) [2], or by tuning system parameters
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without adding noise (parameter-tuning stochastic resonance)

proposed by us [8]-[12][14][15]. Parameter-tuning stochastic

resonance (PSR) is shown to be a better method in some cases

[8]. We have already applied PSR into one-dimensional sig-

nal processing, such as recovering the noisy multi-frequency

signals [9], and reducing the bit-error rate (BER) of the trans-

mission of baseband binary signals [12]. Image processing is

another potential application of stochastic resonance. There

is some very initial research work on this topic based on the

traditional stochastic resonance (adding noise). For some im-

age processing tasks, it is impossible to add additional noise

into the systems. This paper will investigate the applications

of PSR in image processing. Based on the stochastic charac-

teristics described by the dynamic probability density func-

tion of the images processed by the two-dimensional nonlin-

ear stochastic resonance filter, this paper will use parameter-

tuning stochastic resonance technique to process black-white

images corrupted by white Gaussian noise to reveal the pos-

sibility to extend the concept of parameter-tuning stochastic

resonance to two-dimensional cases. This provides an inno-

vation approach for image processing.

The rest of this paper is organized as follows. In Section

2, a nonlinear two-dimensional stochastic resonance system

and the equation satisfied by the dynamic probability density

function of the images processed by this system are intro-

duced. Its stationary and expanding solutions are discussed in

Section 3. A black-white image corrupted by additive white

Gaussian noise is processed by this stochastic resonance filter

in Section 4. Finally, Section 5 closes the paper with brief

concluding remarks and future research directions.

2. TWO-DIMENSIONAL STOCHASTIC
RESONANCE SYSTEM AND EQUATION OF

DYNAMIC PROBABILITY DENSITY FUNCTION

The one-dimensional nonlinear bistable stochastic resonance
system can be described by the following equation [2]

ẋ(t) = ax(t) − bx3(t) + s(t) + η(t), (1)

where a and b are system parameters, s(t) is an input signal,
and η(t) is additive noise.
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Similarly, we can propose the following two-dimensional
nonlinear bistable dynamic system

∂2w

∂x∂y
= −γ

∂w

∂x
+ f(w) + Γ(x, y), (2)

where w = w(x, y) is the state variable (system output),

f(w) = aw − bw3 + h, Γ(x, y) is additive white Gaussian

noise, h is an input signal, and γ is a positive damping coeffi-

cient.
We can reduce the partial differential equation (2) to an or-

dinary differential equation along the line x = x0 + tΔx, y =
y0 + tΔy as

d2w

dt2
= −γΔy

dw

dt
+ΔxΔyf(w)

+ΔxΔyΓ(x0 + tΔx, y0 + tΔy), (3)

where
〈Γ(x, y)Γ(x1, y1)〉 = 2Dδ(x − x1, y − y1). (4)

The equation (3) can then be rewritten as

dw

dt
=Δxv,

dv

dt
=−γΔyv + Δyf(w) +

1

Δx
Γ1(t), (5)

where
〈Γ1(t)Γ1(t1)〉 = 2Dδ(t − t1). (6)

Based on the concept in [13], we can prove the proba-
bility density function ρ(w, v, t) satisfies the following equa-
tion which is called Fokker-Planck equation (FPE) for one-
dimensional cases:

∂ρ(w, v, t)

∂t
=− ∂

∂w
[Δxvρ(w, v, t)]

− ∂

∂v
[Δy(−γv + f(w))ρ(w, v, t)]

+D
1

Δx

∂2ρ(w, v, t)

∂v2
. (7)

3. STATIONARY AND EXPANDING SOLUTIONS OF
TWO-DIMENSIONAL FPE

Let ρ0(w, v) be the stationary solution of (7). It will satisfy
the following equation

− ∂

∂w
[Δxvρ0(w, v)]− ∂

∂v
[Δy(−γv + f(w))ρ0(w, v)]

+D
1

Δx2

∂2ρ0(w, v)

∂v2
= 0. (8)

Assume ρ0(w, v) = e−a0v2
ϕ(w), we can obtain

ρ0(w, v) = e−φ(w,v), (9)

where

φ(w, v)=
Δx2Δyγ

2D
v2 − ΔxΔy2γ

D

Z w

0

f(w)dw − ln N0, (10)

and N0 is a constant for normalization.

Similar to the one-dimensional parameter-tuning stochas-

tic resonance, the derivation of the expanding solution of (7)

will depend on the calculation of the system response speed.
Assume ρ(w, v, t) = ξ(w, v)e−λt. Similar to the one-

dimensional case, let
ξ(w, v) = ψ(w, v)e−φ/2, (11)

where φ is defined in (10) and e−φ is the stationary solution

of (7).
Define the differential operator L as

L(ρ) = − ∂

∂w
(vΔxρ)− ∂

∂v
(Δy[−γv + f(w)]ρ)

+
D

Δx

∂2ρ

∂v2
. (12)

In this case, equation (7) becomes

λψ = −Lψ. (13)

Let
D1 = vΔx,

D2 = Δy[−γv + f(w)],

D22 =
D

Δx
. (14)

We denote the conjugate operator of L as Lc. Let Ls =
(L + Lc)/2, and Las = (L − Lc)/2, that is L = Ls + Las,
we can derive:

Lc=e−φ/2[D1
∂

∂w
(eφ/2) + D2

∂

∂v
(eφ/2)

+D22
∂2

∂v2
(eφ/2)]. (15)

From this, we obtain

Ls=eφ/2 ∂

∂v
[D22e

−φ ∂

∂v
(eφ/2)], (16)

Las=−eφ/2[
∂

∂w
(D1e

−φ/2) +
∂

∂v
(D2e

−φ/2)

+
∂

∂v
(D22

∂φ

∂v
e−φ/2)]. (17)

It is easy to prove the operator Las is anti-symmetric and

Ls is both symmetric and semi-definite. This means that

the differential operator L can be decomposed into the anti-

symmetric part Las and the symmetric part Ls.
Now, we assume that λ is any non-zero eigenvalue of the

operator −L, and λs
1 is the least non-zero eigenvalue of the

operator −Ls. It can be proven that λs
1 can be regarded as a

lower bound of the system response speed of (2), that is

Reλ ≥ λs
1, (18)

where λs
1 can be calculated in an appropriate algorithm.

Based on these, we can get the expanding solution of (7)

ρ(w, v, t) = ρ0(w, v)+C1ψ1(w, v)e−λ1t−φ/2

+C2ψ2(w, v)e−λ2t−φ/2 + ..., (19)

where ρ0 is the stationary solution described by (9), and the

pairs {λi, ψi}, for i = 1, 2, ..., are the eigenvalues and eigen-

function of −L. It is obvious that ρ(w, v, t1) ≈ ρ0(w, v),
when λs

1t1 � 1. This can be satisfied, if the system parame-

ters a, b, and γ which are defined in (2) are tuned properly.
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(a) (b)

Fig. 1. (a) Original Black-white Image (b) Noisy Image

4. IMAGE PROCESSING USING
PARAMETER-TUNING STOCHASTIC RESONANCE

The two-dimensional bistable system (2) can be used as a

nonlinear filter to process the noisy images and improve the

image quality. The stochastic characteristics of the images

processed by this filter are described by (7), (9), and (19). It

can then be used to derive other performance measures based

on the different requirements of image processing tasks, such

as image signal-to-noise ratio, probability of target detection

error, etc. The performance measures can then be taken as

the objective function and will be optimized when the sys-

tem parameters a, b, and γ are tuned properly to synchronize

the input signal and noise and realize the stochastic resonance

effect.
Now, we will apply the two-dimensional stochastic reso-

nance system (2) to the black-white image processing which
are corrupted by the additive white Gaussian noise. The black-
white image s(i, j) is composed of black blocks and white
blocks. Each block is of length Tb. Also, the black pixel is
represented by value −1 and the white pixel is represented by
value 1. The image s(i, j) can then be described as

s(i, j) = −1 or s(i, j) = 1,

for (n − 1)Tb ≤ i < nTb, (m − 1)Tb ≤ j < mTb. (20)

We assume image s(i, j) is corrupted by additive white
Gaussian noise, that is

img(i, j) = s(i, j) + Γ(i, j), (21)

where 0 ≤ i ≤ N − 1, 0 ≤ j ≤ M − 1, and Γ(i, j) is

two-dimensional white Gaussian noise.

Figure 1 shows the original black-white image and the im-

age corrupted by certain additive white Gaussian noise. From

these images, we notice that the useful image signals are to-

tally buried in the background noise and the image patterns

cannot be identified directly.
The recovery of the image corrupted by noise is in fact a

pattern recognition problem. It can be converted to the fol-
lowing detection problem

H0 : img(i, j) = A + Γ(i, j),

H1 : img(i, j) = −A + Γ(i, j), (22)
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Fig. 2. (a) Original PAM Signal s(t) and Filtered Signal x(t)
(b) Noisy Signal

where A=1.

If hypothesis H0 is decided, the image block is then iden-

tified as white. Otherwise, the image block is taken as black.

For this detection task, we will first process the noisy

black-white image with the two-dimensional stochastic res-

onance system (2). Then, we will developed the test statistic

T based on the filtered image pixel values, rather than based

on the noisy image pixel values img(i, j) directly.

For the one-dimensional binary PAM signals corrupted by

white Gaussian noise, the related one-dimensional parameter-

tuning stochastic resonance filter can be used to identify the

original signal bit value, based on the filtered signal value at

the point t = Tb, where Tb is the bit duration. If the value is

positive, then the original bit value is 1, otherwise the original

bit value is -1. The reason is that the filtered signal value will

approach the input value at the end of the bit duration, if the

filter parameters are tuned properly. This is shown in Figure

2.
For the black-white images corrupted by noise, we can

process them in a similar way as one-dimensional case. From
Section 2, we know that the partial differential equation (2)
is reduced to an ordinary differential equation along the line
x = x0 + tΔx, y = y0 + tΔy. For each image block, we can
make decision based on the pixel values around the bottom
right corner of this block. If the average pixel value is less
than zero, the image block is then taken as black. Otherwise,
it is white block. This is demonstrated in Figure 3. This figure
also shows the filtered images for different values of system
parameters a, b, and γ. It is obvious that the filtering effect
is greatly affected by the choices of system parameter values.
They should be tuned optimally to get the best filtered image
quality. The objective function can be the probability of error
Pe

Pe = PAP (−A|A) + P−AP (A| − A), (23)

where PA is the probability of being white block, P−A is the

probability of being black block, P (−A|A) and P (A| − A)
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(a) (b)

(c) (d)

Fig. 3. Filtered Images (a) a = 0.15, b = 20, γ = 1 (b)

a = 0.15, b = 200, γ = 1 (c) a = 10, b = 20, γ = 1 (d)

a = 0.15, b = 2000, γ = 1

are the conditional probability of error detection.

Pe can be expressed as a function of ρ(w, v, t) which is,
in turn, the function of parameters of system (2). So, we can
construct the following optimization problem to optimize the
system parameters and realize the stochastic resonance effect.

min Pe,

subject to: a > 0, b > 0, γ > 0. (24)

5. CONCLUSION AND FUTURE WORK

This paper reveals that the one-dimensional parameter-tuning

stochastic resonance can be extended to the two-dimensional

case. The system parameters of the nonlinear stochastic res-

onance filters can be tuned optimally to realize the stochastic

resonance effect and convert the noise into a positive factor to

improve the image quality. The parameter-tuning stochastic

resonance provides an innovative and promising approach for

image processing. Next, we will implement the optimization

algorithm to search for optimal system parameter values. We

will also explore more applications of this new approach in

image processing.
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