
STABILIZED ANISOTROPIC DIFFUSIONS

Anthony K. W. Sum, Student Member, IEEE, and Paul Y. S. Cheung, Senior Member, IEEE

Department of Electrical and Electronic Engineering
The University of Hong Kong, Pokfulam, Hong Kong

kwsum@eee.hku.hk, and cheung@eee.hku.hk

ABSTRACT

Anisotropic diffusion is an iterative process which provides

efficient signal smoothing with feature preserving capabili-

ties. However, the traditional anisotropic diffusion algorithms

are highly sensitive to the number of iterations. In this paper,

we introduce a novel method in the diffusion formulations

to stabilize the diffusion results. It is generally applicable

to most of the anisotropic diffusion algorithms, and the ex-

perimental results show that the stabilized algorithms provide

improved results.

Index Terms— Anisotropic diffusion, total variation, sig-

nal restoration, image enhancement, partial differential equa-

tion

1. INTRODUCTION

Filtering or smoothing is one of the key steps in signal and

image processing. Many types of images have approximately

piece-wise constant gray levels, which characterizes the co-

herence and homogeneity of an object. Anisotropic diffusion

introduced in [1] is an adaptive smoothing technique which

overcomes the drawbacks of the traditional linear filters, in-

cluding blurring the edges, shifting the edges from its actual

locations, and destroying edge junctions. It can also be used

for image enhancement, segmentation, and scale-space cre-

ation. Anisotropic diffusion methods smooth images by solv-

ing a partial differential equation where the diffusion coef-

ficient is a non-negative and non-increasing function of the

magnitude of local image gradient. This formulation provides

a nice adaptive filtering effect which the edges of the objects

can be preserved.

Anisotropic diffusion algorithms are iterative processes

for minimizing an energy functional in order to optimize the

smoothing effect. However, the stopping criteria for the smooth-

ing process is not defined and the resultant signals or im-

ages are normally flatten after a large number of iterations

in traditional anisotropic diffusion algorithms [1, 2, 3, 4, 5,

6, 7]. Therefore, the optimal stopping time [8, 9, 10] for the

anisotropic diffusion process becomes a known issue of the

existing methods.

In this paper, we introduce a novel method in the diffu-

sion formulations to stabilize the smoothing result. The out-

put of the diffusion process is then converged and is insensi-

tive to the number of iterations. This makes the definition of

the stopping criteria easy, and hence, solves the termination

problem.

This paper is organized as follows: In Section 2, the ba-

sic formulations of anisotropic diffusion is summarized. In

Section 3, we introduce the novel stabilization method for

anisotropic diffusions and define its formulations with a cou-

ple of existing diffusion algorithms in details. In Section 4,

the stabilized algorithms are compared with their original al-

gorithms on various examples to demonstrate the effective-

ness of the proposed method. Finally, the conclusions are

given in Section 5.

2. ANISOTROPIC DIFFUSION

Anisotropic diffusion removes noise from an image by itera-

tive modification of the image via a partial differential equa-

tion. Perona and Malik [1] introduced the idea of nonlinear

diffusion that is preferred within a smooth region to diffusion

near an edge. For a given image u, the partial differential
equation which they had proposed is as follows:

∂u

∂t
= div [g (‖∇u‖)∇u] (1)

where g is the diffusion coefficient and is a non-negative, non-
increasing function of the magnitude of local image gradient.

One of the typical choices of the diffusion coefficient is in (2).

g(∇u) = exp
[
−
(‖∇u‖

k

)2
]

(2)

Since the diffusion coefficients make the diffusion process

perform selective smoothing, which depends on the magni-

tude of the image gradient at the signal sample, the edges

remain sharp and undistorted. Thus, it yields stable edges

across many scales, and it is not necessary to track edges

across the scale space, which is a complicated and expensive

task.
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Inspired by the introduction of anisotropic diffusion, there

have been exploratory efforts in connecting adaptive smooth-

ing with systems of nonlinear partial differential equations

[2, 3, 4, 5, 6, 7], and several modifications of anisotropic

diffusion models were made. Catté introduced a Gaussian

smoothed image as the variable of the diffusion coefficient

g(|∇(Gσ ∗ u)|) in [2]. Further extended their work, Alvarez
modified the diffusion operator in [3] to diffuse the smooth-

ing image u in the direction orthogonal to its gradient and
does not diffuse at all in the direction of the gradient. Luo use

the coupled partial differential equations in [11] to smooth re-

gions and diffuse the image where the gradient is small, but

preserve them well where the gradient is large.

However, all these anisotropic diffusion algorithms are

highly sensitive to the number of iterations. The quality of

the resultant signal will degrade when it is become flatten

or blurred along the iterative process. As a defining charac-

teristic, iterative operations are inevitably involved in adap-

tive smoothing. Thus the performance of an iterative algo-

rithm highly depends upon the termination time, which cou-

pled with the fact that adaptive smoothing algorithms gener-

ally converge to a uniform intensity image [1, 2, 3, 4, 5, 7],

causes what we often refer to as the termination problem [12].

In other words, when and where to stop smoothing is a chal-

lenging problem and there is no explicit stopping criterion has

been found yet. The termination problem indeed becomes an

obstacle for the use of adaptive smoothing in practice [10].

3. STABILIZED ANISOTROPIC DIFFUSION

In order to reduce the sensitivity of the anisotropic diffusion

process on the number of iterations and avoid the rapid degra-

dation of its resultant signal quality, we introduce a stabiliza-

tion method in the diffusion formulations. The idea of this

stabilization method is inspired by the total variation (TV)

method introduced by Rudin et al. in [13]. The TV method

smooths the original signal uo and obtains the resultant image
u by minimizing the following energy functional.

ETV =
∫
Ω

|∇u|dxdy + λ1
2

∫
Ω

|u− uo|2dxdy (3)

where Ω ⊂ R2 is the domain in which the image is defined.

The first term is in fact the total variation of image u. This
term is generally called a regularization term. It is used to

penalize oscillations and contributes as the major smoothing

force in the entire model. The second term is the fidelity term

which avoids the resultant image to deviate from the original

signal too far, and therefore, preserves the major features of

signal.

We find that the fidelity term is robust in controlling the

iterative process not only in the TV method, but also applica-

ble in the diffusion processes of anisotropic diffusions. This

term minimizes the differences between the smoothing signal

and the original signal. Therefore, the smoothed results will

not be flatten since it is governed by the original signal from

time to time during the iterative process through this term.

We incorporate the fidelity term to a couple of anisotropic

diffusion algorithms for performance evaluations. The two

anisotropic diffusion algorithms are the classical reference al-

gorithm (P&M) in [1] and the recently developed algorithm

based on gradient vector flow (GVF) in [7].

The energy function of the stabilized P&M algorithm are

formulated in (4).

EPM =
∫
Ω

g(|∇u|)|∇u|dxdy + 1
2

∫
Ω

|u− uo|dxdy (4)

where g is defined in (2), uo is the original noisy image, and u
is the smoothing image. The Euler-Lagrange of the equation

is computed and can be solved by using a dynamic scheme

below:

∂u

∂t
= div [g(|∇u|)|∇u|] + 1

2
|uo − u| (5)

Similarly, the partial differential equations of the stabi-

lized GVF-based algorithms are formulated in (6).

∂u

∂t
= −�v|∇u|+ 1

2
|uo − u| (6)

where �v is the gradient vector flow [7]. These stabilized anisotropic
diffusion algorithms can prevent the image from getting blurred

to a uniform intensity image. Hence, this can maintain the

quality of the resultant image.

4. EXPERIMENTAL RESULTS

In this section, we describe our comparison methodology and

present the comparative smoothing results between the orig-

inal algorithms and their stabilized versions on various two-

dimensional images.

4.1. Methodology

Signal-to-noise ratio (SNR) is used in evaluating performance
of a smoothing algorithm. We define SNRt be the SNR of

the smoothed image at Iteration t below:

SNRt = 10 log10

{ ∑
(x,y)∈I I(x, y)

2∑
(x,y)∈I [I(x, y)− ut(x, y)]2

}
(7)

For a given image I , uo = I + η is the noisy image at
Iteration 0 with noise η. ut denotes the smoothed image at
Iteration t while an adaptive smoothing algorithm is applied

to uo.
We compare two algorithms, including the anisotropic dif-

fusion (P&M) algorithm in [1] and a recently developed gra-

dient vector flow (GVF) based algorithm in [7], with their
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stabilized versions. In the comparisons, not only SNR will

be used as quantitative comparisons, but also illustrations will

be shown for visual quality comparisons.

4.2. Comparisons

We apply the algorithms on some two-dimensional images.

Fig. 1(a) shows a real clinical magnetic resonance (MR) im-

age. Zero mean white Gaussian noise is added as shown in

Fig. 1(b) with initial SNR equals to 12dB. The algorithms

are applied for 100 iterations. Fig. 1(c) and (d) show the

results of the original and stabilized P&M algorithms respec-

tively. Fig. 1(e) and (f) show the results of the original and

stabilized GVF-based algorithms respectively.

It is clearly shown that the visual quality of the image can

be maintained at certain levels by using the stabilized algo-

rithms after a large number of iterations. By checking the

SNRt along the iteration process in Fig. 1(g), we find that

the SNR of the original P&M algorithm decreases as it blurs

the image gradually and the original GVF algorithm produces

an output image which is heavily blurred. The SNRs of the
results of P&M, stabilized P&M, GVF, and stabilized GVF

algorithms are 13.31dB, 14.76dB, 11.04dB, and 16.45dB re-

spectively. It is noted that the stabilized algorithms provide

higher SNR than the original algorithms, especially after larger
number of iterations.

Fig. 2(a) shows a noise-free benchmark image ”Man-

drill”. Its noisy version is as shown in Fig. 2(b) with initial

SNR equals to 12dB. The results of P&M, stabilized P&M,

GVF, and stabilized GVF, are shown in 2(c), (d), (e) and (f)

respectively. The results of original P&M is quite noisy as it

spreads out the noise after 100 iterations. The stabilized P&M

keeps the visual quality of the image. On the other hand, the

original GVF algorithm blurs the image as in the previous ex-

amples. However, its stabilized version retains a very good

level of visual quality after iterations.

In terms of SNR, the stabilized algorithms consistently
provide stably higher SNR against their original algorithms.
The SNRs of P&M, stabilized P&M, GVF, and stabilized
GVF algorithms are 12.67dB, 13.70dB, 13.53dB, and 16.03dB

respectively.

5. CONCLUSIONS

Anisotropic diffusion is an efficient technique in image pro-

cessing for removing noise while preserving image features.

Using our proposed stabilization method, the originally it-

eration sensitive diffusion process becomes iteration insen-

sitive. This method is applicable to various anisotropic dif-

fusion algorithms for performance improvements. The stabi-

lized anisotropic diffusion algorithms not only provides higher

SNR, but also provides better visual quality in image smooth-
ing. Moreover, their iteration insensitive characteristic im-

prove the feasibility of the anisotropic diffusion algorithms.
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 1. Clinical MR image. (a) Original image. (b) Noisy
image. (c) Result of the P&M algorithm. (d) Result of the

stabilized P&M algorithm. (e) Result of the GVF algorithm.

(f) Result of the stabilized P&M algorithm. (g) The SNRt of

different algorithms along the iterative smoothing process.

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 2. Benchmark ”Mandrill” image. (a) Original image. (b)
Noisy image. (c) Result of the P&M algorithm. (d) Result

of the stabilized P&M algorithm. (e) Result of the GVF al-

gorithm. (f) Result of the stabilized P&M algorithm. (g) The

SNRt of different algorithms along the iterative smoothing

process.
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