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ABSTRACT

This paper presents a missing texture reconstruction method based
on projection onto convex sets (POCS). The proposed method clas-
si es textures within the target image into some clusters in a high-
dimensional texture feature space. Further, for the target missing tex-
ture, our method performs a novel approach, that monitors the errors
caused by the POCS algorithm in the feature space, and adaptively
selects the optimal cluster including similar textures. Then, the miss-
ing texture is restored from these similar textures by a new POCS-
based nonlinear subspace projection scheme. Consequently, since
the proposed method realizes the nonconventional adaptive tech-
nique using the optimal nonlinear subspace, the accurate restoration
result can be obtained. Experimental results show that our method
achieves higher performance than the traditional method.

Index Terms— Image restoration, image texture analysis, inter-
polation, nonlinear estimation.

1. INTRODUCTION

Reconstruction of missing areas is a very important topic in the elds
of image restoration because it can be applied to a number of funda-
mental applications. For example, it is applied to removal of unnec-
essary objects such as superimposed text, restoration of corrupted
old lms, and interpolation of missing blocks transmitted in error-
prone environment for video communications.

In previous work, several researchers have proposed reconstruc-
tion methods of the missing areas. Though most of them can re-
store missing edges accurately [1], their performance in texture ar-
eas is not sufficient for accurate reconstruction. Thus, several tex-
ture reconstruction methods have been proposed so far [2]. They
reconstruct the missing textures by utilizing statistical estimation,
eigenspace methods, etc. However, when some kinds of textures ex-
ist in the target image, they cannot successfully reconstruct all the
missing textures.

This paper proposes a novel texture reconstruction method based
on the theory of projections onto convex sets (POCS). The POCS al-
gorithm has been applied to blocking artifacts reduction in coded
images as a nonlinear image restoration method [3]. First, the pro-
posed method de nes a new criterion in a high-dimensional feature
space [4] and classi es textures within the target image into some
clusters. Further, for the missing texture, we adaptively select the
optimal cluster including similar textures. In this procedure, a novel
approach that monitors the errors caused by the POCS algorithm in
the feature space is introduced into the selection scheme. Then, the
proposed POCS algorithm reconstructs the missing texture from the
selected cluster’s textures by a new nonlinear subspace projection

technique. Since these similar textures are correctly approximated
by using the nonlinear subspace in the least-squares sense, the ac-
curate reconstruction of the target texture can be expected. Conse-
quently, performing the nonconventional approach, that adaptively
selects the optimal nonlinear subspace for the target texture, we re-
store all the missing textures in the target image more accurately than
the previous technique.

This paper is organized as follows. Section 2 explains the POCS
algorithm. In Section 3, we present a novel texture reconstruction
method using the POCS algorithm. In Section 4, experimental re-
sults are shown to verify its high performance.

2. POCS ALGORITHM

This section explains the POCS algorithm. The theory of POCS
was rst introduced in the eld of image restoration by Youla and
Webb. This algorithm estimates the original image f in the Hilbert
space H from its known properties. Given n properties of the original
image f , these properties generate n well-de ned closed convex sets
Ci (i = 1, 2, · · · , n). Further, the original image f should be included
in all the Ci’s and also the intersection of all the Ci’s C∗, i.e.,

f ∈ C∗ =
n⋂

i=1

Ci. (1)

It is clear that the intersection C∗ is a closed and convex set. Con-
sequently, the estimation of f from the n properties is equivalent to
nding at least one point f ∗ belonging to C∗. Unfortunately, C∗ may

be nonlinear and complex in structure so that a direct estimation of
f ∗ is almost infeasible. However, as shown in Fig. 1, given the pro-
jection operator Pi onto Ci, the iteration

ft = PnPn−1 · · · P2P1 ft−1 t = 1, 2, · · · (2)

converges to a limiting point f ∗ of the intersectionC∗ for an arbitrary
initial element f0 in H. Note that the operator Pi satis es

|| f − Pi f || = min
g∈Ci

|| f − g|| (3)

where || · || denotes the norm in H. Then, we can calculate f∗ from
the n properties of the original image by using Eq. (2).

3. POCS-BASED TEXTURE RECONSTRUCTION

This section presents a POCS-based texture reconstruction method.
First, in a high-dimensional feature space, the proposed method de-
nes a new criterion and classi es textures within the target image
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Fig. 1. An illustration of the recursion in Eq. (2) at work.

into some clusters. Further, using the POCS algorithm which in-
cludes an adaptive nonlinear subspace projection approach, we re-
construct the missing textures from the classi cation results.

In this section, the details of the classi cation procedure are de-
scribed in 3.1. Further, in 3.2, we present the reconstruction algo-
rithm of the missing textures.

3.1. Texture Classi cation Algorithm

In this subsection, the proposed method classi es textures within the
target image into K clusters as the preprocessing for the reconstruc-
tion of the missing textures. First, we clip N local images fi (w × h
pixels, i = 1, 2, · · · ,N) not including missing textures from the tar-
get image and generate vectors xi (i = 1, 2, · · · ,N), whose elements
are the raster scanned intensities of them. Secondly, using the Gaus-
sian kernel [4], we nonlinearly map xi into the feature space to ob-
tain φ(xi). Finally, the proposed method regards the obtained results
φ(xi) (i = 1, 2, · · · ,N) as the texture feature vectors and performs
their classi cation that minimizes the following new criterion:

D =
K∑

k=1

M∑

j=1

||φkj − UkUk ′φkj ||2 (4)

where φkj ( j = 1, 2, · · · ,M) is φ(xi) (i = 1, 2, · · · ,N) included in the
cluster k. Further, Uk satis es the following equation of the singular
value decomposition:

ΞkH � UkΛkVk′. (5)

In the above equation, Ξk = [φk1, φ
k
2, · · · , φkM] and

H = I − 1
M
11′ (6)

where I is the M × M identity matrix and 1 = [1, 1, · · · , 1]′ is an
M × 1 vector. From Eq. (5), the following equation can be obtained.

Uk � ΞkHVkΛk−1
. (7)

Then, Eq. (4) can be rewritten as follows:

D �
K∑

k=1

M∑

j=1

||φkj − ΞkHVkΛk−2Vk′HΞk′φkj ||2. (8)

Since the columns of Uk in Eq. (4) are high-dimensional, we cannot
calculate it directly. Therefore, we use Eq. (8) for the calculation of
D.

From Eq. (5), Uk is the eigenvector matrix and also the pro-
jection matrix onto the eigenspace spanned by these eigenvectors.
Thus, the criterion D in Eq. (4) represents the sum of the approxi-
mation errors of φkj ( j = 1, 2, · · · ,M) in their eigenspaces. Further,

since we regard φ(xi) (i = 1, 2, · · · ,N) as the texture feature vector
of xi, the squared errors in Eq. (4) correspond to the differences of
textures. Therefore, the new criterion D is useful for the classi -
cation of the textures. Then, the proposed method can classify the
textures in the target image into K clusters.

3.2. Texture Reconstruction Algorithm

In this subsection, the missing textures in the target image are recon-
structed by the POCS-based nonlinear subspace projection approach
from the classi cation results in the previous subsection. From the
target image, we clip a local image f0 (w × h pixels) including a
missing texture and generate a vector x whose elements are its raster
scanned intensities. Further, for the vector x, the proposed method
calculates its reconstruction result x̂, which satis es the following
two constraints.

[Constraint 1]
In the vector x̂, the known original intensities are xed.

[Constraint 2]
In the high-dimensional feature space, φ(x̂) is in the eigenspace
whose projection matrix is Uk. Then, x̂ satis es

x̂ = φ−1
(
UkUk′φ(x̂)

)
. (9)

In the above equation, φ−1 represents the inverse mapping (pre-image)
from the feature space back to the input space. However, the ex-
act pre-image typically does not exist [4]. Therefore, the proposed
method newly introduces the linear map Ak, which satis es the fol-
lowing equation, into the calculation scheme of the approximate so-
lution.

Xk = AkΞk (10)

where Xk = [xk1, x
k
2, · · · , xkM ] and xkj ( j = 1, 2, · · · ,M) is xi (i =

1, 2, · · · ,N) included in the cluster k. From Eqs. (5) and (10), Ak
can be obtained as follows:

Ak � XkHVkΛk−1Uk ′. (11)

Thus, by using Eqs. (7) and (11), Eq. (9) can be rewritten below.

x̂ � XkHVkΛk−1Uk′φ(x̂)

= XkHVkΛk−2Vk′HΞk′φ(x̂). (12)

Utilizing the POCS algorithm, the proposed method calculates
x̂ that satis es the above two constraints from the initial vector x.
Note that in the eigenspace used at [Constraint 2], we correctly ap-
proximate φkj ( j = 1, 2, · · · ,M) classi ed into the cluster k in the
least-squares sense. Therefore, if we can classify φ(x) of the target
local image f , the proposed method accurately reconstructs it by us-
ing the eigenspace of the cluster k (k = 1, 2, · · · ,K) including φ(x).
Unfortunately, since x contains the missing intensities, φ(x) cannot
be classi ed by using the algorithm shown in 3.1. Thus, in order
to achieve the classi cation of x, the proposed method utilizes the
following novel criterion as a substitute for Eq. (4).

Ek =
1

diag
(
Σ̄
) ||φ(Σ̄x̂) − φ(Σ̄XkHVkΛk−2Vk′HΞk′φ(x̂))||2 (13)

where Σ̄ is a diagonal matrix whose diagonal elements are zero or
one and satis es x = Σ̄x̂. The criterion Ek exactly corresponds to
the squared error converged by the POCS algorithm in the feature
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Fig. 2. (a) Corrupted image including text regions, (b) Reconstructed image by the proposed method (28.13 dB), (c) Reconstructed image by
the traditional method (25.82 dB), (d) Zoomed portion of the original image, (e) Zoomed portion of (b), (f) Zoomed portion of (c).

space. Therefore, this criterion Ek as well as D in Eq. (4) is appli-
cable for the classi cation of the textures. Then, we can realize the
selection of the optimal cluster for the target texture including the
missing intensities. Further, the proposed method regards the result
x̂ obtained by the eigenspace of the selected cluster as the output.
Consequently, performing the nonconventional approach, that adap-
tively selects the optimal eigenspace for the missing texture, we can
restore all the missing textures in the target image accurately.

In this way, we can reconstruct the missing texture in the target
local image. The proposed method clips local images (w × h pixels)
including missing textures at even interval from the upper-left of the
target image and reconstructs them by using the POCS algorithm.
Note that each restored pixel has multiple estimation results if the
clipping interval is smaller than the size of the local images. In this
case, the proposed method regards the result minimizing Eq. (13) as
the nal one.

4. EXPERIMENTAL RESULTS

The performance of the proposed method is veri ed in this section.
In the experiments, Fig. 2(a) is a test texture image (480 × 359 pix-
els, 24-bit color levels), which includes text “Grand Canyon”. Fig.
2(b) shows the reconstruction result of the proposed method. For
comparison, Fig. 2(c) shows a result by the traditional eigenspace
method using the kernel principal component analysis in [4]. For
better subjective evaluation, the enlarged portions around the mid-
dle of the images are shown in Figs. 2 (d)–(f). It can be observed
that the proposed method has achieved noticeable improvements. In
the conventional method, different kinds of textures affect the recon-
struction of the target missing textures. On the other hand, selecting
the optimal cluster including similar textures, the proposed method
can adaptively reconstruct the missing textures from only the reliable

Table 1. Performance comparison (PSNR) of the proposed method
and the conventional method.

Image Conventional method Proposed method
Flowers 25.48 dB 26.25 dB
Bark 23.87 dB 24.97 dB
Brick 35.44 dB 37.69 dB

ones. Therefore, the proposed method realizes higher performance
than the conventional method. Further, different experimental results
are shown in Figs. 3 and 4. Compared to the conventional method,
we can restore various kinds of textures accurately.

Further, in order to quantitatively evaluate the performance of
the proposed method, we use several texture images [5] and per-
form the same simulations as Fig. 2. Table 1 shows the PSNR1 of
the reconstructed results. From this table, it can be seen that our
method has achieved 0.77–2.25 dB improvement over the conven-
tional method. Therefore, high performance of the proposed method
was veri ed by the experiments.

Finally, we verify the computational complexity of the proposed
method. Fig. 5 shows the converged errors versus the iteration num-
ber in our POCS algorithm. From this gure, the errors are con-
verged in the rst few times. Since the POCS algorithm guarantees
the strong convergence [3], we can obtain the reconstruction results
rapidly. Then, several applications of the proposed method can be
expected.

1PSNR = 10 log10
MAX2

MSE where MAX denotes the maximum value of
intensities and MSE is the mean square error between the original image and
the reconstructed image.
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Fig. 3. (a) Target image including text “Buildings in Tokyo”, (b) Reconstructed image by the proposed method (27.48 dB), (c) Reconstructed
image by the traditional method (25.91 dB).

(a) (b) (c)

Fig. 4. (a) Target image including text “Blue Sky and White Cloud”, (b) Reconstructed image by the proposed method (37.33 dB), (c)
Reconstructed image by the traditional method (31.83 dB).
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Fig. 5. Errors converged by our POCS algorithm versus iteration
number in the experiment of Fig. 2.

5. CONCLUSIONS

This paper has proposed a POCS-based texture reconstruction method.
The proposed method classi es textures within the target image in
a high-dimensional feature space. Further, for a target missing tex-
ture, we select the optimal cluster including similar textures by using
the novel approach that monitors errors converged by the POCS al-
gorithm in the feature space. Then, the proposed POCS algorithm
performs the nonlinear subspace projection scheme and restores the
missing texture from those similar textures. Consequently, since we

can adaptively reconstruct the missing textures within the target im-
age from the optimal nonlinear subspaces, the accurate restoration
result is obtained. The simulation results show that our method real-
izes the high reconstruction performance subjectively and quantita-
tively.
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G. Rätsch, and A.J. Smola, “Input space versus feature space
in kernel-based methods,” IEEE Trans. on Neural Networks,
vol.10, no.5, pp.1000–1017, 1999.

[5] MIT Vision and Modeling Group. Vision Texture. [Online].
Available:http://vismod.www.media.mit.edu

I ­ 700


