
MARKERLESS MONOCULAR TRACKING OF ARTICULATED HUMANMOTION

Haiying Liu∗

ObjectVideo, Inc.

11600 Sunrise Valley Dr.

Reston, VA 20191

Rama Chellappa†

University of Maryland

Center for Automation Research

College Park, MD 20742

ABSTRACT

This paper presents a method for tracking general 3D gen-

eral articulated human motion using a single camera with un-

known calibration data. No markers, special clothes, or de-

vices are assumed to be attached to the subject. In addition,

both the camera and the subject are allowed to move freely, so

that long-term view-independent human motion tracking and

recognition are possible. We exploit the fact that the anatom-

ical structure of the human body can be approximated by an

articulated blob model. The optical flow under scaled ortho-

graphic projection is used to relate the spatial-temporal in-

tensity change of the image sequence to the human motion

parameters. These motion parameters are obtained by solv-

ing a set of linear equations to achieve global optimization.

The correctness and robustness of the proposed method are

demonstrated using Tai Chi sequences.

Index Terms— machine vision, tracking, kinematics

1. INTRODUCTION

3D human motion tracking is a very important but challeng-

ing task in many applications such as biomechanics, human

interface design, surveillance systems, virtual reality. Re-

search in this area has mainly focused on tracking relatively

simple repetitive human actions such as walking or jogging,

using various levels of abstraction including edges [1], con-

tours [2], silhouettes [3, 4], texture [5], joints [6], sticks [7],

blobs [8], voxel [9], depth [10], multi-view [11], and motion

[12]. Most of these methods usually require more than one

sequence (camera) in order to produce reasonable tracking.

Methods using motion as the level of abstraction do not have

such a limitation. [12] extended the method from 2D to 3D

by using a twist motion model and exponential maps. A few

good surveys can be found in [13, 14, 15, 16, 17, 18].

In its derivation, [12] (equation (12)) directly assumed

that

eξ̂(t)4×4+ξ̂′
4×4 = eξ̂

′
4×4 · eξ̂(t)4×4 (1)
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which does not hold unless the matrices ξ̂(t) and ξ̂′ commute,
i.e. ξ̂(t)ξ̂′ − ξ̂′ξ̂(t) = 0. Here ξ̂(t) is a 4 × 4 matrix of twist
parameters of the body pose at time t and ξ̂′ is a 4 × 4 ma-
trix related to body motion (translation and rotation). In gen-

eral, ξ̂ and ξ̂′ do not commute. In our implementation of this
approach, we found that when a twist motion model is used

to track the body, the rotation and translation errors mutu-

ally propagate, i.e. the rotation error contaminates the trans-

lation estimation and vice versa. This is not surprising since

the twist motion model couples the translation and rotation

components, and theoretically equation (1) yields an error of

eξ̂
′
4×4 · eξ̂(t)4×4 − eξ̂(t)4×4+ξ̂′

4×4 .

In this paper, we propose a new solution to this prob-

lem. We have found that the twist motion model is not prefer-

able (and not necessary) for estimating the human body base

(torso) posture using motion as a level of abstraction (though

it is still useful to estimate the joint motion). In our method,

the motion of the torso is derived using a traditional motion

model, which is expressed as a rotationR followed by a trans-

lation �t. Since the rotation R and the translation �t are decou-
pled, their errors do not directly affect each other. Another

contribution of this paper is that we propose a re-initialization
scheme so that we are able to extend the degrees of freedom

of each joint to be closer to those of human joints (up to 3

rather than only 1), and thus our method can track more gen-

eral human motion (other than walking). By projecting the

end-effector velocities to the image plane using the scaled or-

thographic projection model, a global linear system is con-

structed through the optical flow (implicitly). The least squares

solution of the system yields a globally optimal estimate of

the articulated body motion. The effectiveness and robustness

of our algorithm are demonstrated using Tai Chi sequences,

which contain general articulated human motion.

2. ARTICULATED HUMAN BODYMODEL

A general human body is modeled as a group of ellipsoids

of different sizes connected by joints. This type of object is

called an articulated object. The body parts include torso,
head, upper arms, forearms, hands, thighs, and calves. The

torso is regarded as the base of the articulated model. Since
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Fig. 1. Articulated human body (part) as a kinematic chain.

our goal is to track more general human motion than walking

or jogging, the degrees of freedom of each joint are designed

to resemble those of a real human body.

3. FORWARD KINEMATIC CHAIN

All joints of an articulated human body are spherical joints

with one to three degree of freedom. In this section, we first

discuss the forward kinematic chain model for an articulated

body connected by pure revolute joints. The result is then ex-

panded to spherical joints for the articulated motion tracking

problem. Chasles’ theorem [19] describes a systematic way

of realizing any rigid body motion. Such an implementation

is called a screw motion. For the articulated rigid human body
model, the motion of a point in a body part is determined by

the forward kinematics of the articulated human body. As-
sume that the body part i in its coordinate frame Bi is con-

nected to the body base in the coordinate frame O through

joints 1, 2, · · · , i; and the relative configurations of the pairs
of adjoining parts are expressed by �ξ1, �ξ2, · · · , �ξi respectively
(e.g. Figure 1). Here �ξ = (�v, �ω) is the screw motion vector,
with the rotation axis defined by �ω and the translation related
to �v. The rigid motion of the body part i in the frame O is

Mobi(θ) = eξ̂1θ1 · eξ̂2θ2 · · · · · eξ̂iθi · Mobi(0), (2)

where ξ̂ =
[

ω̂ �v
0 0

]
∈ xR4×4.Here,Mobi is the rigid body

transformation between the frame Bi and the frame O when

the body parts are in the reference configuration with θ = 0.
Figure 1 is an example of such a kinematic chain. The rigid

motion of the hand in the frame O can be conveniently cal-

culated by Mob3(θ) = eξ̂1θ1 · eξ̂2θ2 · eξ̂3θ3 · Mob3(0), if all
joints are modeled as revolute joints. Equation (2) is called

the product of exponentials formula. It can be proved [19]
thatMobi is independent of the order in which the joints are

rotated. In a more general (natural) model, the shoulder has

three degrees of freedom, and the elbow and wrist have two

degrees of freedom each. Physically, this can be constructed

by combining two or three revolute joints with their axes or-

thogonal to each other and all intersecting at one point. Thus

the combined motion is

Mbi = eξ̂i1θi1 · eξ̂i2θi2 · eξ̂i3θi3 . (3)

In Figure 1, the rigid motion of the hand in frame O is in the

formMob3(θ) =
(
eξ̂11θ11eξ̂12θ12eξ̂13θ13

)
shoulder

·
(
eξ̂21θ21eξ̂22θ22

)
elbow

·(
eξ̂31θ31eξ̂32θ32

)
wrist

· Mob3(0). The motions of other body
parts can be computed similarly.

4. END EFFECTOR VELOCITY OF THE
KINEMATIC CHAIN

In a kinematic chain, joint velocities

�̇
θ = [θ̇1, θ̇2, · · · , θ̇i]T (4)

are mapped to end-effector velocities �V o
obi
by

�V o
obi = Joobi(

�θ)�̇θ (5)

where Joobi(θ) is the spatial manipulator Jacobian J
o
obi
(�θ) :

xRn → xR6×n. It is defined as follows [19]:

Joobi(
�θ) =

[
�ξ1, �ξ′

2, · · · , �ξ′
i

]
, �ξ′

i = Adeξ̂1θ1 ······eξ̂i−1θi−1
�ξi.

(6)

Here �θ = [θ1, θ2, · · · , θi]T is the joint angle configuration,
�ξi is the ith joint axis orientation configuration, and AdM is

the adjoint transformation of the rigid motion M: AdM =[
R t̂R
03×3 R

]
whereM is in the form ofM =

[
R �t
01×3 1

]
.

M defines a rigid motion as a rotationR followed by a trans-

lation �t.

5. ARTICULATED BODY TRACKING USING
OPTICAL FLOW

5.1. Tracking the body base

In this sub-section, we focus on deriving the equations for

tracking a single body base (torso). If the body base can be

successfully tracked, all the other body parts can be tracked

through the kinematic chain given in Section 3.

Notice that the only input data is a video sequence and the

motion is observed through the optical flow. An appropriate

projection model is needed to project the 3-D motion into the

2-D optical flow. When the camera calibration parameters

are unknown and the subject is not too close to the camera,

the scaled orthographic projection is a good approximation.

Denote by O the camera coordinate frame and by B the body

base (part) coordinate frame. A point �pb = [Xb, Yb, Zb]T

in frame B corresponds to �po = [Xo, Yo, Zo]T in frame O.
Projecting the point onto the image plane, its correspondent

image coordinates �pim = [xim, yim]T are

�pim =
[

xim

yim

]
= s · [I2×2 | 02×2] · �po = s · P · �po (7)
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where s is the scale and

P = [I2×2 | 02×2] (8)

is the orthographic projection matrix.

Assume that from time t to time t+1, the point �po rotates
by eΔω̂ and then translates by Δ�v, and the scale is changed
by Δs = s′s(t). Note that for small Δ�ω,

eΔω̂ = I+Δω̂ +
Δω̂2

2
+ · · ·+ Δω̂n

n!
+ · · ·

≈ I+Δω̂ (9)

Under scaled orthographic projection, the optical flow �u =
[ux, uy]T of its corresponding point in the image plane is[

ux

uy

]
=

[
xim(t+ 1)− xim(t)
yim(t+ 1)− yim(t)

]

= s(t) · P · ((s′I+ (1 + s′)Δω̂) �po + (1 + s′)Δ�v) (10)

Let ω̂′ = (1 + s′)Δω̂, �v′ = (1 + s′)Δ�v, where ω̂′ and �v′ are
in the form ω̂′ = [ω′

x, ω
′
y, ω

′
z]

T , �v′ = [v′
x, v

′
y, v

′
z]

T . Equation

(10) becomes

[
ux

uy

]
= s(t) · P · ((s′I+ ω̂′) �po + �v′)

= s(t)
([

s′ −ω′
z ω′

y

ω′
z s′ −ω′

x

]
�po +

[
v′
x

v′
y

])
(11)

Recall that �po = [Xo, Yo, Zo]T . Substituting the flow �v =
[ux, uy]T in the optical flow constraint by (11), we get

(Ix, Iy) · �v + It = 0 (12)

⇒ s(t)
(
(IxXo + IyYo)s′ + Ixv

′
x + Iyv

′
y−

IyZoω
′
x + IxZoω

′
y + (IyXo − IxYo)ω′

z

)
= −It (13)

For N pixels on the body base, we have the linear system

s(t) · A · �δ = −�It (14)

where

A =
[
�A1, �A2, · · · , �AN

]T
(15)

�Ai = [IxiXoi + IyiYoi, Ixi, Iyi,

−IyiZoi, IxiZoi, IyiXoi − IxiYoi]
T

(16)

�δ =
[
s′, v′

x, v
′
y, ω

′
x, ω

′
y, ω

′
z

]T
(17)

�It = [It1, It2, · · · , ItN ]T (18)

The motion (a rotationR followed by a translationΔ�v) of the
body base can then be calculated through the least-squares

solution of (14) by R = e
ω̂′

1+s′ ,Δ�v = �v′
1+s′ Note that the

translation along the Z-axis cannot be detected, due to the
scaled orthographic projection, but it is reflected in the change

of scale s.

5.2. Tracking the other body parts

Recalling (5), (6), (7), and (8), the optical flow contributed by

the scaled orthographic projection of the kinematic chain is[
ux

uy

]
= s(t)·P·�V o

obi
·�po Therefore, the total optical flow of

the ith body part is

[
ux

uy

]
= s(t)·P·

(
(s′I+ ω̂′) �po + �v′ + �V o

obi
· �po

)
Substituting it into equation (12), we get

s(t) ·
(
�Ai

T · �δ + �Bi
T · �̇θ

)
= −�It (19)

where �Ai is defined in (16), �δ is defined in (17), �It is defined

in (18),
�̇
θ is defined in (4) for all K joints in the articulated

bodymodel, and �Bi is defined as �Bi = [Bi1, Bi2, · · · , BiK ]T .
Here, Bij = [Ix, Iy] · P · ξ̂′

j · �po when joint ξj is on the kine-
matic chain that affects pixel i, 0 otherwise.

Let

�Θ =
[
s′, v′

x, v
′
y, ω

′
x, ω

′
y, ω

′
z, θ̇1, θ̇2, · · · , θ̇K

]T
. (20)

For all N pixels on the ith body part, (19) can be re-written
as

s(t) · [Ai|Bi] · �Θ = −�It (21)

whereAi is defined in (15), andBi =
[
�Bi,1, �Bi,2, · · · , �Bi,N

]T
for the ith body part.

5.3. Tracking the whole body

Stacking (21) for all i = 1, 2, · · · ,M body parts together, we

get the global linear system

s(t) · [A|B] · �Θ = −�It (22)

whereA = [A1,A2, · · · ,AM ]
T
,B = [B1,B2, · · · ,BM ]

T
.

The least squares solution of (22) yields the complete body

motion.

6. EXPERIMENTS

The ellipsoid model was used in our experiments. We tested

our method on Tai Chi sequences. The original sequence was

encoded in low-quality mpeg format. Both the background

and the Tai Chi performer were moving. The loose and rel-

atively un-textured clothes made tracking even more chal-

lenging. The body was defined as a 28 degree-of-freedom

(DOF) kinematic structure. During the Tai Chi performance,

the brightness intensity of the torso and limbs often changed

due to the severe shadow. The initial pose of the body model

was pre-determined. The results show that the high-DOF hu-

man body model, performing complex actions, was tracked

robustly. The results for two sequences are shown in Figures

2 and 3. It can be observed that the 3D rotations of the torso,

arms, and legs are well tracked. The result shows the tracking

is reasonably good.
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7. CONCLUSION

We have proposed a closed-form solution for the markerless

monocular articulated motion tracking problem. Optical flow

is exploited implicitly to use all pixels of the body parts as

dense natural built-in markers. We have shown that the twist

motion model introduces errors and thus is not preferable (and

not necessary) to estimate the motion of the articulated human

body base (torso). We have given a new derivation using mo-

tion as a level of abstraction. Together with the exponential

map and kinematic chain, this provides constraints that facil-

itate robust tracking. The degrees of freedom of all joints are

designed to resemble those of a real human body, so that hu-

man actions more general than walking and jogging can be

tracked. A re-initialization scheme is also proposed to handle

the singularities of exponential coordinates. Without explic-

itly using any features, this allows both the objects and the

camera to move freely. It also avoids excessive pre-processing

(such as background subtraction, edge/contour/silhouette de-

tection, etc.), which are usually not stable or even practically

feasible. Limited experiments show the effectiveness and ro-

bustness of our method.
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