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ABSTRACT
Motion region detection is an important vision topic usually tackled
by a background subtraction principle, which has some practical re-
strictions. We hence propose a multi-scale motion region detection
technique that can fast and reliably segment foreground motion re-
gions from two successive video frames. The key idea is to leverage
multi-scale structural aggregation to effectively accentuate real mo-
tion changes while suppressing trivial noisy changes. Consequently,
this technique can be effectively applied to motion region-of-interest
(ROI) based video coding. Our experiments show that the proposed
algorithm can reliably extract motion regions and is less sensitive to
thresholds than single-scale methods. Compared with a H.264/AVC
encoder, the proposed semantic video encoder achieves a bitrate sav-
ing ratio of up to 34% at the similar video quality, besides an overall
speedup factor of 2.6 to 3.6. The motion-ROI detection can process
a 352× 288 size video at 20 fps on an Intel Pentium 4 processor.

Index Terms— Motion detection, image change detection, video
coding, video signal processing, pose recognition

1. INTRODUCTION
Motion region detection is one of important early vision tasks for
many high-level semantic video processing applications, e.g., auto-
mated video surveillance. Different from the traditional background
subtraction paradigm [1], segmenting motion regions based on the
trained background models, we propose to detect motion regions
simply from two successive video frames. The techniques from this
category can bypass some practical constraints, such as the initial
background training period, and still suf ce to provide salient mo-
tion regions for several applications, e.g., semantic video coding.

By far, many algorithms have been proposed for motion detec-
tion and image saliency detection. However, striking a good trade-
off between the detection quality and computational load still re-
mains a challenge. An ef cient static region detection scheme is
adopted for bi-level video in [2], but it can not deal with complicated
scenes well or distinguish separate moving objects. To construct
a scale-invariant saliency map from a static image, a hybrid multi-
scale approach is proposed in [3], and yet it involves a complicated
image segmentation stage as well. The coarse-to- ne strategy in [4]
performs a coarse-level detection at a more than 10-times reduced
image scale to achieve the computational ef ciency, but the detec-
tion quality is hence compromised. Moreover, an integrated algo-
rithm fully exploiting the cross-scale interrelation is not presented.

Aiming at an integrated fast and reliable solution, we propose
a hybrid motion region detection technique using multi-scale struc-
tural change aggregation to accentuate the signals, while suppressing
noise at different levels of processing. We further propose a few spe-
ci c algorithm changes to reduce the complexity. Finally, a promis-
ing motion-ROI based video coding scheme is proposed, resulting in
much improved performance. Its key idea is to encode the motion
foreground regions only, while repeating the background scene.

2. A HIERARCHY APPROACH TO MOTION REGION
DETECTION USING MULTI-SCALE AGGREGATION

To reliably segment moving foreground objects from the input video
frames, we use a bottom-up hierarchical approach that consists of
two different levels: 1) pixel level processing and 2) region level
processing. At the pixel level, the proposed multi-scale structural
change analysis is adequate to identify semantically important im-
age changes, by ltering out the noise. Subsequently, we propose a
series of fast and effective processing at the region level to group the
detected motion pixels and further cull out spurious noisy regions.
2.1. Pixel level: multi-scale structural change detection
Instead of extracting feature contrast at a xed scale, the proposed
multi-scale feature space analysis is essentially meant to build up a
reliable motion saliency map, by aggregating the support from dif-
ferent scales. Since image noise is inherently structureless whereas
the real motion changes possess strong correlations across different
scales, such a multi-scale aggregation actually functions as an adap-
tive lter, where signals are largely accentuated and the intensity of
noise is effectively suppressed. The proposed multi-scale pixel level
processing is depicted in Fig. 1, with the description as follows:

Step 1: Noise reduction. For the current luma frame It(x, y) at
time t, we use a median lter to reduce the noise and denote the re-
sulting image as I

′

t . Note that whenever appropriate, we omit (x, y)

from notations denoting two dimensional images, e.g., I
′

t .
Step 2: Construct Gaussian image pyramid Gt from I

′

t :

Gt =
n

Gl,t : Gl,t =↓(Gl−1,t) and G0,t = I
′

t , l = 0, 1, ..., N−1
o

,

(1)
where ↓(·) is a Gaussian downsampling lter. Depending on the in-
put frame resolution, N is typically set to 2 or 3 in our implementa-
tion to achieve a good trade-off between the quality and complexity.

Step 3: Apply the Laplacian operator to Gt and attain multi-
scale Laplacian maps of the input image, Lt. We adopt the second
derivative of the pixel intensity to extract the underlying structure
and eliminate the impact of the rst order illumination changes [2].
For a 3×3 kernel, the Laplacian of a pixel is simply given by 8 times
the central pixel’s intensity minus the sum of its neighboring pixels.

Lt = ∇2
Gt = ∂2

Gt/∂x2 + ∂2
Gt/∂y2 . (2)

Step 4: Compute SAD (Sum of Absolute Difference) between
Lt and Lt−1, and the resulting Dt captures the structural changes
for two successive frames at different scales, as shown in Fig. 1(c-e).

Dt(x, y) =

u=x+1,v=y+1X
u=x−1,v=y−1

|Lt(u, v)− Lt−1(u, v)| . (3)

Step 5: Aggregate SAD of Laplacian maps (Dt) from each
image scale (i.e., Dl,t, l=0 to N−1) into a single saliency map St:
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Fig. 1. The owchart of the pixel level processing. (a) Previous luma frame It−1 (b) Current luma frame It (c-e) SAD of Laplacian difference
Dt at the image scale 0, 1, and 2, respectively (f) bSt: aggregating multi-scale Dt and normalizing the result St to [0, 255] (g) Thresholding bSt

(h) Applying the median lter and morphological closing (dilation-erosion) operation. For ease of printing, the difference images are negated.

St = AGGREGATE(Dt) =

N−1X
l=0

↑l (Dl,t) , (4)

where ↑l (·) denotes performing the Gaussian upsampling operation
l-times. We normalize St to get a gray-level image bSt, as in Fig. 1(f).

Step 6: Threshold the normalized gray-level image bSt using an
empirical value τ to generate a binary change mask, Bt (Fig. 1(g)):

Bt(x, y) =

(
1 if bSt(x, y) > τ

0 otherwise.
(5)

Step 7: Apply the median lter and morphological closing
(dilation & erosion) operation to Bt, so as to rule out isolated noise
and ll gaps and holes in the motion regions, as shown in Fig. 1(h).

To avoid the computation redundancy in the video processing
loop, we propose to store multi-scale Laplacian maps Lt−1 rather
than the previous luma frame It−1. This change actually leads to an
overall speedup factor of 1.2 to 1.3 on an Intel Pentium 4 processor.

2.2. Region level: connectivity analysis and noise pruning
Although multi-scale structural change detection at the pixel level
can segment the foreground motion regions very well, a clean map of
correct motion blobs is hardly obtainable without enforcing the con-
nectivity constraint (Fig. 2(b) vs. Fig. 1(h)). Therefore, we choose
to employ a two-scan connected component labeling algorithm [5],
which consists in assigning a unique label to each maximal con-
nected region of foreground pixels (Fig. 2(a)). Since the noise at this
stage are typically stray groups with a size smaller than the smallest
real motion regions, they can safely be culled by restricting the la-
beled motion area to cover a minimum number of pixels (Fig. 2(b)).

To speed up the execution, the connected component labeling
algorithm adopts an array rather than the pointer based rooted trees
to store the label equivalence information. Moreover, a path com-
pression strategy is incorporated to accelerate the key Union-Find
process [6], and it reduces the complexity by 40% for this speci c
part, compared with the implementation without using this scheme.

Usually, it is desirable that the detected motion blobs can be
clustered into separate moving objects or bounding-boxes for high-
level semantic video processing. To meet this requirement with little

complexity overhead, we propose a fast histogram analysis approach
that does not need recursive neighborhood distance checking or re-
gion growing. More clearly, we assume that the moving objects dis-
tribute principally in the horizontal direction, and we collect the dis-
tribution histogram of motion pixels for each column of the detected
motion map (with a 2D histogram for the general cases). Based on
such a histogram, bounding-boxes are constructed to contain all the
motion pixels, and they are split whenever a minimum horizontal
gap ε is satis ed between two neighboring groups (see Fig. 2(c)). As
an option, bounding-boxes that are too narrow along the horizontal
direction can be culled out. Finally, to favor semantic video coding
(in Sect. 3), we align the bounding-boxes to the macroblock (MB)
boundaries, and they are extended horizontally and vertically by 1
MB size to further guarantee the motion region detection results.

3. A NOVEL APPLICATION OF THE PROPOSED
TECHNIQUE IN MOTION-ROI BASED VIDEO CODING

Thanks to its fast and reliable nature, the proposed motion region
detection technique has a good potential in several high-level video
processing applications, e.g., object tracking, pose recognition and
object-based video coding. In this paper, we focus on a novel seman-
tic video coding scheme that greatly bene ts from the motion-ROI
concept, without altering the well-established MB coding pipeline.

The proposed video coding method mainly targets at encoding
video contents captured by stationary cameras, which nd wide ap-
plications in video surveillance, news broadcast, and video confer-
ence. Typically, one of the unique characteristics associated with
such stationary camera applications is that the moving foreground
objects are of dominant interests, because they deliver critical se-
mantic meaning compared with the static background scenes.

The key idea of our proposed video coding technique is to en-
code and transmit only the motion foreground regions de ned by
the metadata of bounding-boxes (e.g., Fig. 2(e)), while repeating the
background regions from the previous reconstructed frame. Figure 3
illustrates the basic principle. In fact, this joint motion-ROI tracking
and background replication scheme brings two clear advantages for
ef cient video coding: 1) the compressed bitrate can be largely re-
duced at the similar video quality, because only a limited number of
MBs are encoded for each frame; 2) our experiments further show
that the overall execution speed of motion-ROI based video coding
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Fig. 2. The region level processing. (a) Fast connected component
analysis (b) Culling small-size noisy regions to yield a binary map
(c) Distribution histogram of motion pixels along the horizontal axis
(d) Clustering blobs by bounding-boxes (aligned and extended by 1
MB size) (e) Superimposing the bounding-boxes on the input frame.

(including the detection overhead) is about three times faster than
that of conventional frame-based video encoders, though motion re-
gion detection is needed as a preprocessing step. This indicates that
the proposed multi-scale algorithm is very computationally ef cient.

4. EXPERIMENTAL RESULTS AND DISCUSSION
The proposed multi-scale motion region detection algorithm is im-
plemented in C++ and OpenCV APIs [7]. We use two scales to
detect motion regions for CIF size video sequences, i.e., Hall and
Akiyo, and three scales for Ballet at 1024 × 768. The proposed se-
mantic video codec is implemented on H.264 JM software, version
10.1 [8]. Baseline pro le is used to con gure the encoder. We set
the number of reference frames to 1, and all frames except for the

rst one are encoded as P-frames. R-D optimization and CAVLC
entropy encoding are enabled. Fast full search is adopted for motion
estimation, and the search range is set to±16. Note that we have not
conducted any special code-level optimization to either multi-scale
motion detection or H.264 JM software. All the experiments are
performed on a 3.2GHz Intel Pentium 4 processor with 1GB RAM.

4.1. Motion region detection results
Figure 4 and 5 clearly show that the proposed hybrid multi-scale ap-
proach can more reliably detect the motion blobs over Gaussian hy-
pothesis test [1], as well as the single-scale variant of the proposed
method. Therefore, proper bounding-boxes de ning motion regions
can be attained by our algorithm for various sequences with differ-
ent visual features. Ballet is a multi-view video sequence from Mi-
crosoft Research, where some parts of the foreground dancer have

(a) (b)

Fig. 3. Motion-ROI based video coding. (a) Encoding only the MBs
belonging to the detected motion bounding-boxes (b) The recon-
structed frame by stitching motion regions with static background.

(a) (b)

(c) (d)

Fig. 4. Motion detection results for Ballet (at frame 6). (a) Current
frame (b) Gaussian hypothesis test (c) The single-scale variant of the
proposed algorithm (d) The proposed multi-scale algorithm.

low intensity contrasts against the background. Hall represents a
video clip captured under unstable (or ickering) lighting conditions.

Because motion regions can be reliably tracked by our multi-
scale technique, we nd that the extension of bounding-boxes can be
safely reduced to 1 MB size (even to 0), compared to a conservative
value of 3 in our single-scale implementation. Such an algorithm up-
grade can reduce the average bounding-box area, resulting in about
29% less MBs to be coded by the proposed video codec for Ballet.

Furthermore, owing to this multi-scale processing, real feature
changes can be accentuated while the noise is largely suppressed.
Hence, the proposed algorithm is less sensitive to the threshold set-
ting than the traditional single-scale image change detection tech-
niques. For instance, for Hall (at frame 37) in Fig. 5, the valid
threshold ranges (normalized to [0,1]) using Gaussian hypothesis
test, the single-scale variant of the proposed algorithm, and the pro-
posed multi-scale algorithm are 7%, 4%, and 14%, respectively.
4.2. The performance of the motion-ROI based video encoder
Because we use the background replication for the static regions
while only coding the foreground motion regions, the conventional
frame-based PSNR becomes inappropriate in assessing the video
quality. Moreover, the frame-based PSNR tends to be highly in u-
enced by the original video’s background noise variations (discarded
in our encoder for they are classi ed as trivial noisy changes in the
preprocessing steps), which would hence yield unfair PSNR gures.
In order to properly emulate the perceptual quality in such situa-
tions, an objective quality metric is proposed [9], whose basic idea
is to unevenly weight the errors in different image areas according to
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Fig. 5. Motion detection results for Hall (at frame 37). (a) Current
frame (b) Gaussian hypothesis test (c) The single-scale variant of the
proposed algorithm (d) The proposed multi-scale algorithm.

semantic partitions, e.g., background replication has a small impact
on the overall image quality, compared to foreground regions. This
method therefore favors constant foreground (FG) PSNRs, which
has the highest impact on the visual quality. Table 1 presents the
R-D performance comparison between the original H.264 encoder
and the proposed semantic video encoder. At the negligible FG-
PSNR changes and similar frame-level subjective quality, the pro-
posed motion-ROI based video coding leads to a bitrate saving ratio
of up to 34.1%, compared with the original H.264 video encoder.

From the complexity aspect, we observe from Fig. 6 that the
proposed semantic video encoder (including motion detection over-
head) runs 2.6 to 3.6 times faster than the original H.264 encoder.
We can still achieve a speedup factor of 2.3 to 3.2, when the sim-
pli ed UMHexagonS [8] is used for fast motion estimation in both
encoders. The reasons for such a signi cant speedup are two-fold:

rstly, because a lower number of foreground MBs are encoded
while the background MBs are skipped, the proposed coding pro-
cess is largely accelerated. Secondly, since the proposed multi-scale
algorithm is designed for a good balance between the quality and the
speed, the complexity overhead due to this additional preprocessing
is very limited. In fact, the speed test of our proposed multi-scale
method indicates that a real-time frame-rate of 20 fps is reached for
an image size of 352×288 on our 3.2GHz Intel Pentium 4 platform.
4.3. Extending the application to pose recognition
Not limited to its application in semantic video coding, the pro-
posed motion region detection technique can also be applied to pose
recognition by generating timed Motion History Image (tMHI) [10].
Rather than demanding an appropriate background model to extract
silhouette maps, our algorithm can identify motion blobs from two
successive frames, which suf ce for constructing tMHI. Our exper-
iments (not reported here due to the limited space) show that the
movement of the dancer’s arms in Ballet can be encoded in a single
gray-level tMHI image, facilitating the high-level pose recognition.

5. CONCLUSION AND FUTURE WORK
A fast and reliable motion region detection algorithm is proposed to
segment moving foreground objects from the input videos. The key
contribution is our multi-scale structural change aggregation scheme,
in addition to an integrated hierarchical motion detection and noise
pruning approach, which yields a good trade-off between the quality

Table 1. R-D coding performance comparison between the original
(Ori.) H.264 encoder and the proposed (Pro.) video encoder.

Q P A v e r a g e F G - P S N R   f o r   P   f r a m e s   ( d B ) A v e r a g e   b i t r a t e   f o r   P   f r a m e s   ( k b p s ) 
O r i .   P S N R P r o .   P S N R d - P S N R O r i .   b i t r a t e P r o .   b i t r a t e d - b i t r a t e 

A k i y o 
2 8 3 7 . 0 2 3 6 . 9 9 - 0 . 0 3 7 5 . 3 9 6 3 . 5 6 1 5 . 6 9 % 
3 2 3 4 . 0 9 3 4 . 1 0 0 . 0 1 4 0 . 0 1 3 4 . 0 6 1 4 . 8 8 % 
3 6 3 1 . 4 1 3 1 . 4 6 0 . 0 5 2 3 . 1 2 1 9 . 3 6 1 6 . 2 8 % 

H a l l 
2 8 3 5 . 9 4 3 5 . 9 1 - 0 . 0 3 2 3 7 . 8 9 1 5 6 . 8 5 3 4 . 0 6 % 
3 2 3 2 . 9 6 3 2 . 9 4 - 0 . 0 2 1 0 5 . 5 8 8 3 . 5 8 2 0 . 8 4 % 
3 6 3 0 . 0 6 3 0 . 0 5 - 0 . 0 1 5 4 . 7 0 4 7 . 0 0 1 4 . 0 9 % 

B a l l e t 
2 8 4 0 . 7 8 4 0 . 7 2 - 0 . 0 6 4 9 1 . 7 9 3 9 4 . 8 2 1 9 . 7 2 % 
3 2 3 9 . 2 2 3 9 . 1 6 - 0 . 0 7 3 1 2 . 3 9 2 6 0 . 5 2 1 6 . 6 0 % 
3 6 3 7 . 4 0 3 7 . 3 0 - 0 . 1 0 2 0 4 . 2 4 1 7 7 . 9 0 1 2 . 9 0 % 
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Fig. 6. Relative execution time comparison of different schemes.

and processing speed. Based on this technique, the performance of
the proposed motion-ROI based video encoders is greatly boosted.

Future work will focus on improving the proposed algorithms in
tackling abrupt illumination variations and dynamic scenes. Further
accelerating the motion detection will make it more advantageous.
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