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ABSTRACT 

Accurate and robust image motion detection has been of 
substantial interest in the image processing and computer 
vision communities. Unfortunately, no single motion detection 
algorithm has been universally superior; while biological 
vision systems are adept at motion detection.  Recent research 
in neural signals have shown biological neural systems are 
highly responsive to chaotic signals.  In this paper, we analyze 
image sequences using frame-wise phase plots and demonstrate 
that the changes in pixel amplitudes due to the motion of 
objects in an image sequence, results in apparently chaotic 
behavior in phase space.  We explore these chaotic phenomena 
in a variety of image datasets to show their repeatability, to 
validate the assumption of ergodicity, and to demonstrate their 
uniqueness from the changes due to illumination, particularly 
spatio-temporally varying illumination. 
 
Index Terms-- Image motion analysis, Image 
segmentation, Image sequence analysis, Chaos, Nonlinearities. 

1. INTRODUCTION
Detection and segmentation of objects based on their 

motion in images, including in the presence of spatio-
temporally varying illumination has been the subject of 
intensive research for many years, with two more recent 
examples provided in [1] and [3].  Unfortunately, none of these 
algorithms have been shown to be generally superior.  One 
interesting observation is that all of these methods operate on 
the grayscale imagery. However, a grayscale image is the result 
of a complex interaction of: (i) the motion of object of interest, 
(ii) its surface characteristics, and (iii) the external illumination 
[3]. Since the effects of motion and illumination are both due to 
underlying multiplicative processes, interrelated through the 
non-linear interaction of the surface normal with the direction 
of illumination, it is difficult to separate the effects of 
illumination and motion.    

It has been shown that non-linear dynamical systems 
which are driven by an underlying multiplicative process often 
exhibit chaotic behavior [9][10].  Chaos theory has been 
successfully used to model many naturally occurring processes 
in physics, and most recently have also found success in 
modeling the biological neural activity [12][13][14]  In this 
paper we demonstrate that the effects of motion in images have 
chaotic behavior, while the effects of illumination remain 
deterministic; thereby making it possible to robustly distinguish 
illumination changes from the changes due to the motion.  
Also, the demonstration of chaotic behavior in image motion 

sequences may have a profound impact in providing insight 
into the understanding why many biological vision systems are 
so adept at detecting motion.  

2. BACKGROUND OF IMAGE MODELING 
There are two elements to the motion segmentation 

problem that a successful algorithm must provide: (i) sensitivity 
to motion of the objects in the image, and (ii) insensitivity to 
the effects of spatio-temporal illumination changes, which are 
demonstrated in Figure 1.  Various researchers have modeled 
illumination changes as multiplicative linear effects [2][4], and 
under the simple Lambertian model, effect the scene radiance 
according  to[1]: 

INLm ,        (1) 
where  is the scale change to the illumination and mL  is the 
resulting radiance.  Both the author in [1] and Cho and Kim in 
[2] have verified this multiplicative model.  The changes in 
radiance due to the motion of an observed object however 
result in non-linear multiplicative effects through the 
product of the surface normal with the illumination source 
as the object moves in the scene.  This has also been verified 
by Xu and Roy-Chowdury who state: “[the changes in the 
observed coordinate points] is a non-linear function of the 
[rotational and translational] motion variables” [5].  They 
developed a bi-linear model to explain the effects of motion 
and illumination,  under the assumption of small changes to 
support linearizing this non-linear relationship.  Rather than 
relying on linearization, we will utilize methods from analyzing 
chaotic systems to attempt to exploit these non-linearities, 
particularly to allow us to robustly separate the effects of 
motion from the effects of spatio-temporally varying 
illumination. 

(a) (b) (c) 
Figure 1: Spatio-temporal illumination: (a) first image, (b) 
second image, and (c) graphic showing moving light band.

3. CHAOS AND MULTI-FRACTALITY IN 
NEURAL SYSTEMS 

There is substantial evidence that signals in biological 
neural pathways have a chaotic nature [12][13][14].  As stated 
by Nagao, et al. ’diverse types of chaos have been confirmed at 
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several hierarchical levels in the real neural systems from single 
cells to cortical networks’ [13].  They proposed a chaotic model 
to explain the problem of alternation in perception of 
ambiguous objects, where each possible explanation of the 
viewed object represents a distinct basin in a chaotic attractor, 
and the neural system transitions between these basins [13].  
Likewise, earlier work by Freeman proposed that the olfactory 
system exhibits chaotic behavior, and then used this model to 
explain the ability of biological systems to recognize a single 
scent from a complex background of scents. They likewise 
found evidence of chaotic behavior in visual perception, where  
Freeman observed: ‘the images [of EEG brain activity] suggest 
that an act of perception consists of an explosive leap of the 
dynamical system from the “basin” of one chaotic attractor to 
another’ [12].    

There is a strong relationship between chaos and fractals, 
as mentioned by Peitgen [9]: “as geometrical patterns, strange 
attractors are fractals; [while] as dynamical objects, strange 
attractors are chaotic.”  Consequently, measures of multi-
fractality can be an indicator of possible chaotic behavior in 
systems [9].  For example, recently many researchers have been 
“using fractal theory to…characterize neuronal dynamics” [14].  
Zheng et al. have demonstrated that the neural firings in the 
human brain “are consistent with a multi-fractal process…” and 
that signals emanating from these regions are distinguishable 
through multi-fractal analysis [14].   

The following section provides evidence that the effect of 
motion of objects in an image sequence on pixel amplitude 
does indeed exhibit multi-fractal and possibly chaotic behavior, 
which may provide some insight into explaining the 
exceptional ability of most biological vision systems to detect 
and exploit motion. 

4. CHAOTIC PHENOMENA IN IMAGE 
SEQUENCES 

Physical systems with underlying multiplicative processes 
have been shown to have the potential to exhibit chaotic 
behavior, and as Equation (1) demonstrates, the perceived 
amplitude of a pixel in an image is a non-linear multiplicative 
process (non-linear through the vector dot product)  [9].   
Recent research by the author in [1] has shown that motion 
between image pairs exhibits interesting chaos-like behavior 
when viewed in the joint-histogram domain between the two 
images, as shown in Figure 2.   

Analysis of the image pairs in the joint histogram domain 
was motivated by the recent popularization of mutual 
information for image registration.  In these applications, the 
mutual information between two images is defined as [6]: 

,
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where )(ap and )(bp are the distributions of images A and B,
and ),( bap is the joint distribution of images A and B, and a
is the intensity of a pixel in image A and b is the corresponding 
intensity of the same pixel in image B.  Also, the joint 
distribution of two images can be approximated by using the 
joint histogram S(a, b), where a and b are the grey levels in the 

respective images and the pair (a, b) provides the coordinate for 
the entry in the histogram. 

Researchers have shown a tangible connection between 
information creation and chaos, with Eckmann and Ruelle 
stating, “the average rate of information production in an 
ergodic state is related to sensitive dependence on initial 
conditions”, which is a well known characteristic of chaotic 
systems [9][10].  In particular, researchers have shown that the 
mutual information between data sets can be used to “provide a 
quantitative characterization of chaotic spatial patterns” [11].  
Additionally, Peitgen, et al, states that chaotic behavior 
(particularly the existence of strange attractors) of dynamical 
systems can be detected in the phase plot of the system, which 
is the 2-dimensional plot of the state variable versus its velocity 
over time [9].  Since the key quantity in estimating the mutual 
information between two signals is the joint density function, 
which can be estimated through the joint histogram, the joint 
histogram image is actually an alternate representation to the 
phase plot.

(a) (b)

(c) (d)
Figure 2: Scattegrams vs. phase plots, (a) start image, (b) 
mosaic from start image, (c), histogram of (b), and (d) 
phase plot of (b).

Figure 2 for a sub-sequence of the ‘Reinhafen’ [7] outdoor 
traffic sequence, where Figure 2 (b) provides a zoom of the 
specific the mosaic within the image being processed.  It is 
important to process image regions (called mosaics in this 
paper) rather than the entire image since the phase plot of an 
entire image is often too complex due to the variety of 
simultaneously occurring events.  Figure 2 (c) shows the joint 
histogram between the two successive image frames, and 
Figure 2 (d) shows the corresponding frame-wise phase plot 
between the two images (display of image intensity versus the 
change in intensity).  Note the duality of the two measures is 
immediately apparent.   

Phase plots traditionally map the trajectory of a single 
point over time, while here the phase plot maps the intensity-
versus-change in intensity for all the pixels between two 
adjacent image frames. The term frame-wise phase plot is used 
here to differentiate it from the traditional temporal phase plot.  
We observe here, in particular, the non-deterministic nature of 
the signal, where it shows highly fractal characteristics [9]. 

Likewise, traditional temporal phase plots capture the 
trajectory of the system state variable of a dynamical system 
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over time.  Figure 3 highlights a collection of closely spaced 
pixels (5 pixels spacing) which will be tracked over 24 time 
samples as a vehicle moves through the image.  Figure 4 (a) 
shows the resulting temporal phase plot of this set of pixels 
tracked between the frame in Figure 3 (a) and the frame in 
Figure 3 (b) (12 frames later), while Figure 4 (b) captures the 
complete trajectory of the pixels over the entire image sequence 
through the frame in Figure 3 (c) (24 frames total).  Figure 5 
provides a similar comparison of the frame-wise versus 
temporal phase plots for a sequence of 20 frames from the 
CAVIAR [8] image set highlighting the trajectories taken by 
the pixel amplitudes in two different regions in the image.  The 
image sequence in Figure 5 is particularly interesting due to the 
motion of human subjects both in the region of nominal 
illumination and in the region of extreme, nearly saturated 
illumination.  The set of points selected in the brighter region 
occupies a space where one of the subjects walks through 
during the time interval. Clearly the phase plots in Figure 2 and 
Figure 5 exhibit both a fractal and a chaotic nature, which we 
will demonstrate are quite distinct from the phase plots of pixel 
amplitudes experiencing illumination changes [10]. 

  There are three interesting phenomena to observe  from 
Figure 2, Figure 4, and Figure 5; (i) the parallelism between the 
frame-wise phase plots in Figure 2 (d) and the conventional 
temporal phase plots in Figure 4 (b),which is also seen by 
comparing  Figure 5 (b) with  Figure 5 (d) and (f), (ii) the 
sensitivity to the initial pixel location of the trajectory through 
phase space, and (iii) the transition of Figure 4 (b) into a 
different region (in comparison to Figure 4 (a)) of the phase 
plot, as well as localization of the phase trajectories in Figure 5, 
where there are two distinct regions in the phase corresponding 
to the two groups of moving objects in the image.   These 
effects of local areas of attraction in the phase plot are 
examples of basins of attraction. 

(a) (b) (c)
Figure 3: Image sequence at the beginning, middle, and end 
of time window; where motion is present at labeled pixels.

(a) (b)
Figure 4: Temporal phase plot of five closely spaced 
image points, (a) for sequence from Figure 3 (a) through 
(b), and (b) for entire sequence through Figure 3 (c).

The strict parallelism between the frame-wise phase plots 
of Figure 2 (d) and the conventional temporal phase plots in 
Figure 4 (b) and Figure 5 (d) and (f) have tremendous 
significance. This demonstrated parallelism is a manifestation 
of ergodicity where the temporal behavior of a single particle 

can alternatively be analyzed by viewing a spatial average over 
an ensemble of particles [10].  Ergodicity is a critical concept in 
analyzing chaotic systems, and can be expressed 
mathematically by [9]: 

xdxgxg
m

lim
m

k
Ak

m 01
1   (3) 

where m is the size of the ensemble, g(x) is the ergodic quantity 
being computed, x is the state space variable, and  is the 
measure of integration over the region A of the phase plot.  
While ergodicity is a well accepted assumption in many 
physical systems, it can rarely be visually demonstrated. 

Item (ii) can be seen by following the trajectories of pixels 
at closely spaced locations in the images over time, particularly 
visible in Figure 5.  The sensitivity to initial conditions of the 
trajectories in the phase space is a key indicator of the possible 
presence of chaos in a dynamical system [9][10]. 

(a) (b)

(c) (d)

(e) (f) 
Figure 5: Scattegrams versus phase plots, (a) start image, 
(b) frame-wise phase plot, (c) mosaic from start image, (d) 
temporal phase plot of five closely spaced image points, 
(e) mosaic from start image, (f) temporal phase plot of five 
closely spaced image points.

Item (iii), addresses the phenomenon shown in Figure 4 
(a) and Figure 4 (b) where the trajectory of the pixels transition 
from one region (or basin) of the phase plot into another basin 
as the pixels transition from capturing the reflectance of the 
vehicle, to capturing the reflectance of the shadow region.   
This is an interesting demonstration that may help explain 
Freeman’s noting the presence of leaps in signals in the neural 
system between basins of chaotic attractors during perception 
[12].  Thus, it may be that the images of objects and their 
shadows are related through the interaction of two attractor 
basins.   

While the key symptoms of chaos, namely sensitivity to 
initial conditions and distinct basins of attraction is 
demonstrated from the effects on the dynamics of the 
amplitudes of image pixels due to  motion, Figure 6 shows the 
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effects on pixel amplitudes due to illumination changes.   
Figure 6 (c) shows that the phase plot corresponding to 
illumination is tightly packed and more deterministic than the 
chaotic phase plot associated with motion from Figure 2 (d) and 
Figure 5 (b). Likewise, the pixel amplitudes captured in the 
temporal phase plot also clearly follow a more deterministic 
non-chaotic trajectory for illumination changes.  Due to space 
limitations, only a few image examples have been provided, 
however, numerous standard image databases (from [7] and 
[8]), and custom illumination data sets have all verified the 
repeatability of the distinct fractal and chaotic nature of the 
phase space trajectories for motion sequences, versus the 
deterministic phase space trajectories caused by spatio-
temporally varying illumination.  

(a) (b)

(c) (d)
Figure 6: Effects of illumination change, (a) image with 
moving illumination band but no motion, (b) mosaic 
region to analyze, (c) graphic of spatio-temporal 
illumination, (d) frame-wise phase plot, and (e) temporal 
phase plot.

We are ultimately interested in segmenting motion in 
image sequences with spatio-temporal illumination changes. 
Consequently, Figure 7 demonstrates the effects on the phase 
plot of an image sequence with both motion and illumination 
present from the image pair shown originally in Figure 1, and 
the specific mosaic being processed is provided in Figure 7 (a).  
In Figure 7 (b) the non-chaotic characteristic of the upper 
portion of the phase plot is clearly visible (this region 
corresponds to the pixels in the image mosaic with illumination 
change), which is in sharp contrast to the highly chaotic nature 
of the lower portion of the phase plot (corresponding to the 
object motion).  

(a) (b) 
Figure 7: Example of multi-fractal image, (a) image 
mosaic from first frame, (b) phase plot.

5. CONCLUSIONS & FUTURE WORK 
We proposed that motion in images may cause chaotic 

changes in the image pixel amplitudes.  This chaotic nature was 
witnessed both in the temporal phase plots of single pixels over 
time and through ensemble phase plots from adjacent image 
frames. Hence, we demonstrated support for the ergodic nature 
of pixel amplitude changes in images due to motion.  
Ergodicity will play a key role in supporting the development 
of measures suitable for motion detection and segmentation.  
We also demonstrated that the effects due to illumination 
changes are non-chaotic and follow deterministic trajectories in 
phase space.  Our ongoing research is addressing possible 
measures to quantify the chaotic nature of the motion signals to 
detect motion and differentiate motion changes from 
illumination changes for the purpose of motion segmentation, 
and once these measures are finalized, further work will 
support the integration of the output of the chaos-based motion 
detection with means for accurately estimating the actual pixel 
velocities.
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