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ABSTRACT

Extracting the motion parameters of a moving camera is an impor-
tant issue in computer vision. This is due to the need of numerous
emerging applications like telepresence and robot navigation. The
key issue is to determine a robust estimate of the (3x3) essential ma-
trix with its five degrees of freedom. In this work, a robust technique
to compute the essential matrix is suggested under the assumption
that the images are calibrated. The algorithm is a combination of the
five-point relative pose problem using an optimization technique on
a manifold, with the random sample consensus. The results show
that the proposed method delivers faster and more accurate results
than the standard techniques.

Index Terms— Differential Geometry, Iterative Methods, Ma-
chine Vision.

1. INTRODUCTION

Multi-view 3D reconstruction is a well established problem in com-
puter vision. Based on the common features of a sequence of images,
it is possible to obtain the scene structure along with the camera po-
sitions [1]. In the case where the intrinsic parameters of the camera
are known, the problem summarizes in determining the essential ma-
trix (EM) between the consecutive views since it encapsulates all the
information needed to extract the rigid motion, i.e. rotation matrix
and translation vector.

Several techniques have been developed to compute this entity,
starting from the celebrated eight-point algorithm that was formu-
lated by Longuet-Higgins in [2] arriving at the seven-, six-, and five-
point algorithm [1,3–5] and Gauss-Newton or Newton iterative tech-
niques [6, 7].

The five points algorithm have given better results than the eight,
seven, and six points algorithms in terms of accuracy and perfor-
mance under noise; moreover, the obtained solution conforms to the
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properties of the EM and does not require a least-squares fit [8].
Nevertheless, this algorithm results in ten possible solutions. Thus,
each one has to be tested in order to determine the best solution.

Since the matches are usually not ideal, the five points algorithm
has to be implemented in conjunction with the random sample con-
sensus (RANSAC). In each iteration, it is required to recover the
rotation matrix and the translation vector for each of the ten solu-
tions and then triangulate at least one point match for disambigua-
tion [5]. In addition, to account for the imperfectness of the matches,
a non-linear triangulation technique, which is usually computation-
ally expensive, has to be employed to minimize the error [1].

In a telepresence scenario, a mobile robot or teleoperator is usu-
ally equipped with a stereo camera which might be installed at a
remote location. The operator who is usually placed at a different lo-
cation has to be updated about the 3D structure and pose information
as fast as possible. Thus, fast and accurate techniques that compute a
robust estimate of the essential matrix has to be used. This criterion
might not be met by the robust version of the five-point algorithm
since its computational overhead is relatively high.

In this work, a fast and robust algorithm that computes the EM
is presented. It is based on optimization techniques over a manifold
where a cost function has to be defined and minimized such that the
minimum is the required EM [6]. In addition, the proposed technique
is compared in terms of speed and performance to the five points
algorithm [8]. Results show that the technique is faster and delivers
more accurate results.

Section 2 presents some preliminaries needed to understand the
work. Section 3 describes the iterative technique used to compute
the EM using the optimization technique over a manifold assum-
ing ideal matches. Section 4 establishes the robust technique used
to compute a robust estimate of the EM. Section 5 presents the five
point algorithm using ideal matches. Section 6 shows an analysis
and a comparison of the proposed technique with the five-point al-
gorithm. Finally, conclusions are drawn in Section 7.

2. PRELIMINARIES

It is well known that any two calibrated point matches p and q in
two images satisfy the epipolar constraint if

qT ·E · p = 0, (1)
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holds, where E is the 3x3 essential matrix. The essential matrix E
can be written as

E = [t]×R = U ·E0 ·VT
(2)

where [.]× is the skew symmetric matrix operator defined below, t is
the 3x1 translation vector, R is the 3x3 rotation matrix between the
two views, and U and V are 3x3 orthogonal matrices obtained via

singular value decomposition (SVD), and E0 =
h

1 0 0
0 1 0
0 0 0

i
. From this

equation, it is easy to see that E has 6 degrees of freedom (DOF),
encapsulated in the elements of R and t or in U and V respectively.
Since the scaling factor is not important, only 5 DOF are usually
considered [1]. Therefore, a 3×3-matrix is called an essential matrix
if it has singular values equal to {1, 1, 0}.

From the algorithms that are mainly used to compute the es-
sential matrix, the five-point and the Newton-type algorithms are the
ones that are able to enforce the constraints in their derivations [5–7].
The eight-point algorithm does not enforce any constraint on the so-
lution EM; thus, the result has to be corrected by an SVD to obtain
a least squares solution [2]. The seven- and six- point algorithms,
satisfy the singularity constraint in their derivations; however, the
obtained EM has to be corrected to satisfy the singular values con-
straint [1,3,4]. Consequently, this fact creates another motivation for
comparing the behavior of these two algorithms.

3. THE GAUSS-NEWTON ITERATIVE TECHNIQUE

The main issue here is to extract the EM from the calibrated point
matches. Since the essential matrix E is a 3x3 matrix with 9 entries,
the first step is to find a suitable parametrization of the set of essen-
tial matrices that takes into account these 5 DOF. In [6], the correct
geometry and the differential manifold structure of the set of essen-
tial matrices was exploited. In the sequel, we will call this manifold
of all essential matrices, the essential manifold ξ.

The rotational transformations in �3 are represented by the el-
ements of the special orthogonal group SO3, which consists of all
3×3 orthogonal matrices of determinant equal to one. The set SO3

is a 3 dimensional Lie group and its associated Lie algebra so3 is
the set of 3×3 skew symmetric matrices which can be considered
as the tangent space of SO3 at the identity. There is a well known
isomorphism that allows to identify so3 with �3, defined as:

[ ]× :�3 −→ so3,2
4 ω1

ω3

ω3

3
5
×

=

2
4 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

3
5 . (3)

Let U,V∈ SO3 with E = UE0V
T , one possible smooth and local

parametrization for ξ around an essential matrix E is as

μ(U,V) : �5 −→ ξ, μ(U,V) (x) = UeΩ1(x) ·E0 · e−Ω2(x) ·VT , (4)

where Ω1 and Ω2 are mappings defined respectively as:

Ω1 : �5 −→ so3,2
64

ω1

...
ω5

3
75
×

:=
1√
2

2
4 0 − ω3√

2
ω2

ω3√
2

0 −ω1

−ω2 ω1 0

3
5 = Ω1(ω)

Ω2 : �5 −→ so3,2
64

ω1

...
ω5

3
75
×

:=
1√
2

2
4 0 ω3√

2
ω5

− ω3√
2

0 −ω4

−ω5 ω4 0

3
5 = Ω2(ω).

Note that the
√

2 factors were introduced for subsequent Riemannian
geometry interpretations [6]. This parametrization of ξ ensures that
one actually deals with the correct number of DOF, i.e. with five
DOF, the dimension of ξ. Consequently, only five point matches in
general position are required to compute the solution. Furthermore,
the computed essential matrix will satisfy the singularity constraint
and will have exactly two singular values equal to one.

In order to compute the required E, a suitable cost has to be
derived from Equation (1). This cost then has to be minimized taking
into account the parametrization defined in (4). This is achieved by
employing an optimization technique. In this work, Gauss-Newton
optimization will be used to optimize over the smooth manifold of
essential matrices since it has a local quadratic convergence to the
solution. Thus, in each iteration a linear system has to be solved
which involves both, gradient and Hessian evaluation [6]1.

4. THE PROPOSED ROBUST ITERATIVE TECHNIQUE

In order to minimize a cost derived from Equation (1), point matches
between the candidate images are required. These are obtained by
detecting some features in the images, e.g. using Harris feature de-
tector, and then matching the points using any similarity measure,
e.g. correlation. However, this will lead to errors in the results since
a lot of false matches will be introduced. To overcome this prob-
lem, the Gauss-Newton optimization will be applied together with
the Random Sample Consensus (RANSAC) algorithm [9].

Random samples of at least five points each are taken from all
the primary matches found. For each sample i, an essential matrix is
generated and a robust error measure is computed. Then, the hypoth-
esis with the most number of points and the lowest distance measure
is retained. The steps of the algorithm are outlined in Table 1. To in-
crease the accuracy, the final result can then be refined using bundle
adjustment [10].

Table 1. The Proposed Robust Iterative Technique

Step 1: Choose a random sample of at least 5 point matches and
set the distance threshold d

Step 2: Reject the sample points that are in the critical
configuration by testing the condition of the
Hessian matrix

Step 3: Compute the Essential Matrix estimate using the
algorithm of Section 3

Step 4: Compute the distance εi for each point match as in (6).
Reject the points with distances larger than d

Step 5: Repeat Steps 1 to 4 until convergence

4.1. The Distance Measure

The distance measure that is implemented in this algorithm is the
reprojection error εi, which is defined as:

εi = d (pi, p̂i)
2 + d (qi, q̂i)

2 . (5)

1The Matlab implementation of this algorithm can be downloaded from
http://www.ldv.ei.tum.de/page169
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pi and qi are the measured point matches to be tested, while p̂i and
q̂i are the true correspondences that satisfy (1) exactly.

This error when minimized results in the Maximum Likelihood
estimate of the essential matrix assuming that the noise in the point
matches measurements follow a Gaussian distribution. Equation (5)
can be simplified by taking the first-order Sampson approximation:

ε̃i =
(qT ·E · p)

2

(Epi)
2
1 + (Epi)

2
2 + (ET qi)

2
1 + (ET qi)

2
1

, (6)

where (.)
j

denotes the jth entry of the corresponding vector [11].

4.2. Critical Configuration

In order to avoid the occurence of a critical configuration, the cho-
sen point samples must not be coplanar. This can be solved by in-
creasing the amount of points in the chosen sample since this will
minimize the probability of coplanarity of the points [3]. It is easily
noticed in experiments that if the chosen points are coplanar or close
to coplanarity, the Hessian matrix H that is computed tends to be
ill-conditioned; moreover, its inverse might not exist. Consequently,
a critical configuration can be avoided by testing the condition num-
ber of the Hessian H. If it is too small, the sample is rejected. From
a mathematical point of view one needs at least five points which
are in general position, a term used in algebraic geometry. But this
is a property which is analytically hard to verify, a solution to this
problem is therefore just to use more than five points.

5. THE FIVE-POINT ALGORITHM

When the camera intrinsic parameters are known, five points are the-
oretically enough to compute the essential matrix since it only has
five DOF. This is one of the motivations that gives the importance
to the five-point pose algorithm. This technique has been dealt with
thoroughly in the literature [10, 12, 13]. Recently, an efficient vari-
ant of the five-point algorithm has been proposed and successfully
applied to compute the essential matrix [5]. Like all the other tech-
niques, the five-point algorithm uses the epipolar constraint (1) as a
starting point to construct the equations. To enforce the properties of
the essential matrix into the solution, the following constraint has to
be included:

EET E− 1

2
trace

`
EET

´
E = 0. (7)

Since this constraint is cubic, it will give rise to a cubic polyno-
mial through which E has to be determined. Thus, up to ten solutions
will be obtained and each has to be tested in order to choose the best
one. This is done by choosing a robust error function as in (6), and
then choosing the essential matrix with the least error and the most
number of points. The final solution can then be refined using bundle
adjustment. Nevertheless, due to the large number of solutions that
is obtained with each sample, the essential matrix in the two view
case will be susceptible to errors.

To overcome this ambiguity, the authors of [5] used three views
instead since the solution obtained will be unique even if the sample
point matches used are coplanar (critical configuration). However,
this will lead to a large computational overhead since a lot of op-
erations have to be repeated, e.g. the SVD of each essential matrix
has to be computed and then triangulation of at least one point for
disambiguitation needs to be done as well.

6. ANALYSIS AND COMPARISON

The five-point algorithm had a very good precision in the results and
better performance under noise when compared to the eight-, seven-,
and six-point algorithms [8]. Thus, it will be used in the comparisons
done with the Gauss-Newton algorithm. To obtain a robust estimate,
both techniques will be used in conjunction with RANSAC as de-
scribed in Section 4. Since the extraction of the rigid motion is not
the goal of this work, no bundle adjustment was conducted in this
analysis.

The data used for testing is formed by generating random matri-
ces and translation vectors, forming the corresponding EMs by em-
ploying Equation (2). Then, random 3D points are generated from
a field of view of 60◦ and then projected onto two 512 × 512 im-
age planes using the previously generated rotations and translations.
Unless otherwise specified, all the used data were generated using a
zero-mean, unit-variance normal distribution. The analysis was re-
peated 50000 times to ensure the correctness of the results. All the
tests were performed on a 3 GHz Pentium-4 machine using Matlab.
In all of the tests, the maximum distance d allowed was set to 10−3

to obtain accurate results.

First the performance of both of the algorithms with respect to
the noise will be tested. Thus, the sample matched points were per-
turbated with a zero mean white Gaussian noise, while varying the
standard deviation up to one pixel error in each of the images. For
each run, we computed the error measure defined by:

error = min

 
E

||E|| −
Ê

||Ê|| ,
E

||E|| +
Ê

||Ê||

!
, (8)

where E is the true essential matrix and Ê is the estimated one. This
was done since the estimated result is defined up to a scale. The
result of this test is depicted in Figure 1. Note that the number of
points chosen in each RANSAC sample was set to the minimal case
of 5 points. As seen in the results, the behavior of the two algorithms
is almost identical; however, the average error of the proposed algo-
rithm is lower. This result was also noticed for a higher number of
points in each sample size. Taking Figure 2 for example, the num-
ber of points that was used in each RANSAC iteration is 15, which
is more than enough even for the eight-point algorithm [1]. This
shows that the proposed technique is more robust to noise than the
calibrated five-point pose algorithm.

Another entity that needs to be tested is the dependency on the
number of match points used in each sample of the RANSAC algo-
rithm. This result can be directly depicted by looking at Figure 1 and
Figure 2. It is easily noticed that the average error becomes lower
for both of the algorithms.

Finally the time needed to produce the estimate of the essential
matrix will be tested. In this analysis, the minimum number of 5
point matches per sample was used to show the functionality of each
algorithm under the worst condition. In Figure 3, the computation
time versus noise is plotted. It can be seen that the proposed algo-
rithm is faster. The average time that was taken by the proposed
method is 0.054 seconds for each of the fifty thousand cases made,
while that of the calibrated five-point algorithm is 0.062 seconds.
Thus, the amount of gain in time is about 14.8%.

The analysis that has been done in this section, can be easily ex-
tended to the case of three views as in [5]. The sensitivity of both of
the algorithms will not change with respect to the noise. However,
in each iteration, the proposed algorithm, has to perform a SVD for
one essential matrix followed by triangulation of at least one point
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for disambiguation. In the case of the calibrated five-point pose al-
gorithm, these operations must be performed to every real solution
of the essential matrix. For example, when the five-point algorithm
finds only two real solutions, one extra SVD operation and triangu-
lation must be performed in comparison to the proposed algorithm,
while nine extra operations must be conducted in each iteration when
ten real solution essential matrices are found. Thus, the proposed al-
gorithm, will save all of these extra computations made which will
introduce a gain in the overall speed. This gain mostly depends on
the triangulation algorithm used and the SVD operations.

7. CONCLUSION

A fast and robust technique that extracts the essential matrix was
proposed. The method is based on the Gauss-Newton optimization
on a manifold where it is exploited that the set of essential matrices
forms a smooth manifold. The technique is comparable to the five
point pose algorithms since it preserves all the properties of the es-
sential matrix and requires also five point matches to compute the
result. In conjunction with RANSAC, the algorithm was able to de-
liver faster and more accurate results even in the worst case analy-
sis: minimum number of 5 point matches per sample and high noise
level. In addition, it was shown that the proposed algorithm is able
to save a lot of operations, and hence computation time, that accom-
pany the calibrated five-point algorithm in the multi-view case due
to the uniqueness of its solution.

Fig. 1. Plot of the estimation error versus the noise using 5 point
matches in each RANSAC sample.

Fig. 2. Plot of the estimation error versus the noise using 15 point
matches in each RANSAC sample.

Fig. 3. Plot of the time in seconds versus the noise using the minimal
case of 5 point matches in each RANSAC sample.
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