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ABSTRACT

This paper proposes a method to integrate motion and re-
gion information into a recursive temporal noise reduction
filter for video signals. We also propose an artifact-robust
motion detection algorithm suitable for noise reduction. It is
based on local low-pass and maximum filters and on noise-
adaptive global gray-level stabilization. Region information
is obtained from difference frames resulting from the pro-
posed motion detection. The detected motion and regions are
then integrated to compute the temporal filter coefficients that
reduce both noise and motion blur. Simulation results show
that the proposed method increases the performance of recur-
sive temporal filtering and achieves an average gain of 3.6 dB.

Index Terms— Motion analysis, Image region analysis,
Object detection, Filtering, Video signal processing

1. INTRODUCTION

Noise in video signals hinders the performance of video pro-
cessing such as segmentation and compression. Hence, video
noise reduction which exploits motion and region information
has become increasingly used in modern video systems.

Artifact-robust motion and region information is pivotal
for motion-adaptive recursive temporal noise reduction which
provides a less computationally demanding alternative to mo-
tion estimation and compensation based denoising methods
[1] making it more attractive for TV and video systems that
do not use motion estimation. However, the problem is how
to acquire accurate motion and region information and how to
integrate them to yield a stable recursive temporal noise filter
in the presence of high motion and noise.

Video signals are temporally correlated in stationary re-
gions in which temporal low-pass filtering can significantly
reduce noise. Nevertheless, the correlation is lost in 1) mov-
ing regions where temporal filtering is liable to cause motion
blur or ghosting or 2) in regions with artifacts such as shadow
and illumination changes where low-pass filtering is hindered.
Integrating artifact-robust motion and region information can
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help separate correlated regions and decide how much filter-
ing is suitable in them. Such integration adapts noise reduc-
tion to the structure and motion of the object regions.

Algorithms for motion adaptive noise reduction such as
[2] pay little attention to obtaining artifact-robust motion in-
formation or utilizing stable region information. For example,
the method in [2] generates region information through sim-
ple thresholding of motion information obtained from wavelet-
based noise-reduced frames which can be sensitive to illumi-
nation changes and shadows.In contrast, methods that pay at-
tention to the quality of the motion and region information [3]
do not adapt to the needs of recursive temporal filtering.

The objective of motion detection (MD) is to indicate the
moving regions in video frames. Haan et. al [3] detect mov-
ing regions by taking the magnitude of frame differencing
between the current frame and a reference frame. The MD
is efficient, however, it is sensitive to noise and illumination
variations. Lee et. al [4] present a MD method that considers
motion information to be the maximum gray-level difference
in three consecutive difference frames and removes false mo-
tion due to noise by applying a median filter which does not
perform well for Gaussian noise. Note that in [4] and [5]
multiple field delays are required. Aach et. al [5] model the
noise in difference frames as additive white Gaussian noise
(AWGN) and perform MD based on a significance test. For
robust and accurate MD, a threshold transformation algorithm
based on significance invariance is applied. Aach et. al’s MD
method does not account for artifacts caused by global (e.g.,
illumination changes) and local (e.g., shadow). Thus, it may
suffer from video sequences with complex content.

The contributions of the proposed method are; 1) detec-
tion of artifact-robust motion and region information, and 2)
integration of motion and region information for stable recur-
sive temporal noise reduction. The remainder of the paper is
as follows. Sections 2 presents the proposed approach theo-
retically. Objective simulation results are discussed in Section
3 and Section 4 concludes the paper.

2. PROPOSED ALGORITHMS

In this paper, an AWGN model is assumed [3]. Let F
η
k be

a noisy video frame at time instance k defined by F η

k =
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Fk +ηk, where Fk is the noise-free frame and ηk is the added
noise component. A pixel in Fk is denoted by Fk(i, j) where
(i,j) are spatial coordinates. ηk(i, j) is the amount of noise
added to Fk(i, j). Fig. 1 shows an overview of the proposed
algorithm. First, F

η
k and F

η
k−1

are fed into the proposed mo-
tion detector which outputs the artifact-robust motion infor-
mation or difference frame Dk. Next, Dk is used to com-
pute region information Bk and the recursive temporal filter
coefficients Ck. Then, Ck is updated with binary region in-
formation Bk to get the improved coefficients Ĉk based on
integration of motion and region information. Finally, Ĉk is
used in

F̂k = ĈkF
η
k + (1− Ĉk)F̂k−1, (1)

to get the noise-reduced current frame F̂k from the noisy cur-
rent frame F

η
k and the noise-reduced previous frame F̂k−1.

Fig. 1. Proposed integration of motion and region information
for noise reduction.

2.1. Proposed Motion Detection

The quality of difference frames Dk may be degraded by three
main factors; noise, motion instability, and local changes such
as shadow and object velocity. Noise introduces globally scat-
tered artifacts in Dk whereas both motion instability and lo-
cal changes lead to holes and gaps in the detected moving
regions. The basic idea of the proposed MD method (Fig. 2)
is to reduce noise and stabilize the gray-levels (i.e., motion
difference) in Dk. First, |F η

k -F η
k−1
| is low-pass filtered with a

Fig. 2. Block diagram of the proposed MD algorithm.

uniform convolution mask to reduce the effect of noise. Then,
we limit the differences in the noise-reduced difference frame

D
μ
k to an automatically determined noise-adaptive gray-level

limit glim. This step is necessary to globally stabilize (or fil-
ter) the high motion in Dk. High motion may be caused by 1)
local changes, 2) object textures and velocities.

It is important to adapt the gray-level limit glim to noise in
order to tune the performance of motion detection and even-
tually noise reduction. Setting glim low increases the sensi-
tivity to artifact caused by non-motion related factors (such as
shadow) and produces larger regions in Bk, which results in
reduced filtering. In contrast, low glim is good for frames with
low noise-levels to reduce motion blur in moving regions.

We adapt glim to the noise-level using

glim = gc
lim + c · ση, (2)

where gc
lim and c are experimentally set to 48 and 2.5, re-

spectively, and ση is the estimated AWGN standard deviation.
The noise-level is measured in the Peak Signal to Noise Ratio

(PSNR) defined by PSNRη = 10 log
10

g2

max

σ2
η

where gmax is

the maximum possible gray-level (e.g., 255).
It is also important to establish a lower-bound on glim.

This is because a too low glim will cause many pixels in Dk

to be wrongly classified as white (moving) pixels in Bk which
will turn off the temporal noise filter. To establish such a
lower-bound, we condition PSNRglim

Dμ (the PSNR of D
μ
k in

Fig. 2 obtained with a given glim) to be larger than PSNRη or

PSNRglim

Dμ = 10 log
10

g2

lim

MSED
μ

k

≥ PSNRη, (3)

where MSED
μ

k
is the mean-square error (MSE) between noisy

Dd
k and its noise-reduced approximation D

μ
k . When a 3 ×

3 average filter is applied to get D
μ
k , it can be shown that

MSED
μ

k
= 1

72
ση. Let glim = αgmax, (3) is rewritten as

PSNRglim

Dμ = 10 log
10

g2

max

σ2
η

+10 log
10

72α2 ≥ PSNRη. (4)

From (4), we get α ≥ 0.1179 and gmin
lim ≥ 30. Note that as

expected gc
lim > gmin

lim .
After stabilizing the high motion in difference frames, a

maximum filter is applied to reduce small holes, gaps, and
granular blobs inside the moving regions and cause stabil-
ity around the boundaries between the moving and the static
regions. We use the maximum filter after global gray-level
stabilization because the maximum filter tends to enlarge the
instability of the gray-levels in Dk.

2.2. Proposed Motion and Region Integration

Regions Bk are obtained by thresholding Dk (e.g., using [6])
and initial filter coefficients Ck are computed from motion
information Dk using the negative quadratic relation

Ck(i, j) = β2

(
Dk(i, j)

glim

)2

− 2β
Dk(i, j)

glim

+ Cmin, (5)
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where β = Cmin − 1 and Cmin = 0.1 is the minimum filter-
coefficient. Since, all gray-levels in Dk after global gray-level
stabilization will be limited to glim, we use it to normalize
Dk in (5). We have also tested a linear relation between Ck

and Dk and concluded the negative quadratic performs better
because it increases Ck with Dk at a faster rate to rely more
on the current pixel than the previous pixel (see (1)). Then Ck

are updated based on region information Bk to get an updated
set of coefficients Ĉk using

Ĉk(i, j) =

{
Ck(i, j) : Bk(i, j) = 0
Bk(i, j) : otherwise

(6)

The purpose of (6) which integrates Dk and Bk is to deter-
mine regions where motion blur is more likely to result from
filtering than noise reduction gain. In other regions, the rela-
tionship between Ck and Dk will govern how much filtering
is performed. For example, if the artifact-robust region de-
tection classifies the pixel as moving (Bk(i, j) = 1), noise
filtering is turned off by setting Ĉk(i, j) to be 1. Otherwise, if
the pixel is classified as stationary, then Ĉk(i, j) = Ck(i, j)
and the amount of filtering is governed by (1) and (5). The
effect of the proposed motion and region integration using
(6) is more visible in sequences with global motion in which
Dk identifies both the moving areas and regions with high
structure. For example, in the flowergarden sequence, despite
global motion, the sky is detected as a spatially homogeneous
region and used in filtering while the slightest movement in
the grass area is considered unsuitable for filtering because
of its spatial structure. In other words, (5) and (6) reflect the
reliability of motion and the suitability of region.

3. RESULTS

To evaluate the performance of the proposed method, we se-
lected the test video sequences: Tennis (zoom in and out cam-
era motion), Flower garden (translation camera motion), Train
(high structure), Survey (no global motion with heavy ob-
ject occlusion) and Patrol car (translation and rotation camera
motion). The sequences selected represent different types of
global and object motion. Each video sequence is corrupted
with 25 dB and 30 dB noise-levels. The PSNR gain is calcu-
lated as R = PSNR

F̂k
− PSNRη where PSNR

F̂k
is the PSNR

of the noise reduced frame F̂k.
Since our objective is to evaluate the suitability of the

proposed motion detection and proposed region integration
to temporal filtering, we fix the temporal filter and compare
our methods to a recent motion detection method [5] by us-
ing its output motion information Dk and region information
Bk. The noise reduction gain over time for the 25 dB and
30 dB noisy Tennis test sequence is plotted in Fig. 3 (a) and
(b), respectively. Note that the performance drop at frames
20 and 50 is due to shot changes. The proposed method out-
performs [5] by almost 3.5 dB, indicating that the proposed

motion detection is more suitable for motion-adaptive noise
reduction than [5]. The same can be said about the results of
Flower garden, Train, and Survey test sequences depicted in
Figs. 3 (c)-(h).

Table 1 summarizes the performance of the proposed method
over all video sequences used. We note the consistent gain in-
crease per noise level.

Table 1. Average gain using the proposed and [5] methods.
Alg. 20 dB 30 dB 40 dB
Proposed 4.2 3.5 3.0
[5] 1.3 0.8 0.5

4. CONCLUSION

This paper proposed an algorithm for integrating motion and
region detection tailored for the needs of recursive tempo-
ral noise filters. The proposed motion detection deploys, lo-
cal low-pass and maximum filters and noise-adaptive global
gray-level stabilization for motion detection. Region infor-
mation is obtained from difference frames resulting from the
proposed motion detection. The integration of the detected
motion and region information is used to compute recursive
temporal filter coefficients that reduce both noise and motion
blur. The proposed method is found more suitable for recur-
sive temporal noise reduction than the referenced motion de-
tection method with an average gain of 3.6 dB.
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(a) 25 dB Tennis
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(b) 30 dB Tennis
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(c) 25 dB Flower garden
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(d) 30 dB Flower garden
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(e) 25 dB Train
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(f) 30 dB Train
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(g) 25 dB Survey
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(h) 30 dB Survey
Fig. 3. Noise reduction gain over time for selected test sequences for proposed and referenced method [5].
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