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ABSTRACT

Motion-compensated lifted wavelets have received much interest for
video compression. While they are biorthogonal, they may sub-
stantially deviate from orthonormality due to motion compensation,
even if based on an orthogonal or near-orthogonal wavelet. A tem-
poral transform for video sequences that maintains orthonormality
while permitting flexible motion compensation would be very de-
sirable. We have recently introduced such a transform for unidirec-
tional motion compensation from one previous frame. In this pa-
per, we extend this idea to bidirectional motion compensation. Or-
thonormality is maintained for arbitrary integer-pixel motion com-
pensation by cascading a sequence of incremental orthogonal 3× 3
transforms. The energy of three input pictures is accumulated in
two temporal low-bands while the temporal high-band is zero if
the input pictures are identical after motion compensation. Further,
the motion-compensated orthogonal transforms can be cascaded to
build a dyadic wavelet decomposition. The new bidirectionally
motion-compensated orthogonal transform compares favorably with
the lifted 5/3 wavelet in video coding experiments with integer-pixel
motion compensation.

Index Terms— Temporal subband coding of video, orthog-
onal transforms, bidirectional motion compensation, motion-com-
pensated orthogonal transforms.

1. INTRODUCTION

Well known methods for representing image sequences for coding
and communication applications are standard hybrid video coding
techniques as well as motion-compensated subband coding schemes.
To achieve high compression efficiency, standard hybrid video en-
coders operate in a closed-loop fashion such that the total distortion
across the reconstructed pictures equals the total distortion in the cor-
responding intra picture and encoded displaced frame differences. In
case of channel errors, decoded reference frames differ from the op-
timized reference frames at the encoder and error propagation is ob-
served. On the other hand, transform coding schemes operate in an
open-loop fashion. Consider high-rate transform coding schemes in
which the analysis transform produces independent transform coeffi-
cients. With uniform quantization, these schemes are optimal when
utilizing an orthogonal transform [1]. Further, Parseval’s relation
holds for orthogonal transforms such that the total quantization dis-
tortion in the coefficient domain equals that in the image domain. In
case of channel errors, the error energy in the image domain equals
that in the coefficient domain. Hence, the error energy is preserved
in the image domain and is not amplified by the decoder, as is the
case, e.g., for predictive decoders.

During the last decade, there have been attempts to incorpo-
rate motion compensation into temporal subband coding schemes
[2, 3, 4, 5] by approaching problems arising from multi-connected
pixels. In [6], we propose a unidirectionally motion-compensated
orthogonal transform that strictly maintains orthogonality for any
motion field. The transform is factored into a sequence of incremen-
tal transforms that are strictly orthogonal. The incremental trans-
forms maintain scale counters to keep track of the scale factors that
are introduced to ensure orthogonality. The decorrelation factor of
each incremental transform is determined by the scale counters and
is chosen such that the transformmeets an energy-concentration con-
straint. The experiments show that this orthogonal transform offers
an improved energy compaction when compared to motion-compen-
sated lifted Haar wavelets and closed-loop hierarchical P pictures.

In contrast to our previous work in [6] where only unidirectional
motion compensation considered, this paper extends the approach
to bidirectional motion compensation. The presented bidirection-
ally motion-compensated orthogonal transform is able to consider
up to two motion fields per frame. Similar to our previous work,
we factor the transform into a sequence of incremental transforms
which are strictly orthogonal. The incremental transforms maintain
scale counters that are compatible with the scale counters in [6]. The
decorrelation factors of each incremental transform are determined
such that an energy-concentration constraint is met for bidirectional
motion compensation.

The paper is organized as follows: Section 2 introduces the
bidirectionally motion-compensated orthogonal transform and dis-
cusses the incremental transform as well as the energy-concentration
constraint. Section 3 proposes a method to incorporate this trans-
form into a dyadic decomposition for groups of pictures. Section 4
presents the experimental results.

2. BIDIRECTIONALLY MOTION-COMPENSATED
ORTHOGONAL TRANSFORM

This section discusses how the transform is factored into incremental
transforms. We outline the construction of the incremental transform
and the incorporation of the energy-concentration constraint.

Let x1, x2, and x3 be three vectors representing consecutive
pictures of an image sequence. The transform T maps these vectors
according to (

y1

y2

y3

)
= T

(
x1

x2

x3

)
(1)

into three vectors y1, y2, and y3 which represent the first temporal
low-band, the high-band, and the second temporal low-band, respec-
tively. We factor the transform T into a sequence of k incremental
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transforms Tκ such that

T = TkTk−1 · · ·Tκ · · ·T2T1, (2)

where each incremental transform Tκ is orthogonal by itself, i.e.,
TκT

T
κ = I holds for all κ = 1, 2, · · · , k. This guarantees that the

transform T is also orthogonal.

2.1. Incremental Transform

Let x
(κ)
1 , x

(κ)
2 , and x

(κ)
3 be three vectors representing consecutive

pictures of an image sequence if κ = 1, or three output vectors of
the incremental transform Tκ−1 if κ > 1. The incremental transform
Tκ maps these vectors according to⎛

⎝ x
(κ+1)
1

x
(κ+1)
2

x
(κ+1)
3

⎞
⎠ = Tκ

⎛
⎝ x

(κ)
1

x
(κ)
2

x
(κ)
3

⎞
⎠ (3)

into three vectors x
(κ+1)
1 , x

(κ+1)
2 , and x

(κ+1)
3 which will be further

transformed into the first temporal low-band, high-band, and second
temporal low-band, respectively.
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Fig. 1. The incremental transform Tκ for the three frames x
(κ)
1 , x

(κ)
2 ,

and x
(κ)
3 which strictly maintains orthogonality for any bidirectional

motion field (�dκ, �d
∗
κ). Tκ minimizes the energy in x2,j .

Fig. 1 depicts the process accomplished by the incremental
transform Tκ with its input and output images as defined above. The
incremental transform removes the energy of the j-th pixel x′2,j in

the image x
(κ)
2 with the help of both the i-th pixel x′1,i in the im-

age x
(κ)
1 which is linked by the motion vector �dκ and the l-th pixel

x′3,l in the image x
(κ)
3 which is linked by the motion vector �d∗κ (or

the j-th block with the help of both the i-th and the l-th block if all

the pixels of the i-th and l-th block have the motion vectors �dκ and
�d∗κ, respectively). The energy-removed pixel value x

′′
2,j is obtained

by a linear combination of the pixel values x′1,i, x
′
2,j , and x

′
3,l with

scalar weights h21, h22, and h23. The energy-concentrated pixel
value x′′1,i is also obtained by a linear combination of the pixel val-
ues x′1,i, x

′
2,j , and x

′
3,l but with scalar weights h11, h12, and h13.

The energy-concentrated pixel value x′′3,l is calculated accordingly.
All other pixels are simply kept untouched.
To summarize, the incremental transform Tκ touches only pixels

that are linked by the same motion vector pair (�dκ, �d
∗
κ). Of these,

Tκ performs only a linear combination with three pixels that are
connected by this motion vector pair. All other pixels are kept un-
touched. This is reflected in the following matrix notation:

Tκ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...
...

...
...
...

...
...

· · · 1 0 · · · 0 0 · · · 0 0 · · ·
· · · 0 h11 · · · 0 h12 · · · 0 h13 · · ·
...
...

...
. . .

...
...

...
...

...
...

· · · 0 0 · · · 1 0 · · · 0 0 · · ·
· · · 0 h21 · · · 0 h22 · · · 0 h23 · · ·
...
...

...
...
...

...
. . .

...
...

...
· · · 0 0 · · · 0 0 · · · 1 0 · · ·
· · · 0 h31 · · · 0 h32 · · · 0 h33 · · ·
...
...

...
...
...

...
...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

The diagonal elements equal to 1 represent the untouched pixels and
the elements hμν represent the pixels subject to linear operations.
All other entries are zero.
Now, the scalar weights hμν are arranged into the 3 × 3 matrix

H . The incremental transform Tκ is orthogonal if H is also orthog-
onal. We construct an orthogonalH with the help of Euler’s rotation
theorem which states that any rotation can be given as a composition
of rotations about three axes, i.e. H = H3H2H1, whereHr denotes
a rotation about one axes. We choose the composition

H =

(
h11 h12 h13

h21 h22 h23

h31 h32 h33

)
=

(
cos(ψ) 0 sin(ψ)

0 1 0
− sin(ψ) 0 cos(ψ)

)
(

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

)(
cos(φ) 0 sin(φ)

0 1 0
− sin(φ) 0 cos(φ)

)
(5)

with the Euler angles ψ, θ, and φ. The Euler angles will be deter-
mined in the next subsection which discusses the energy concentra-
tion constraint.
Note that, to carry out the full transform T , each pixel in x2 is

touched only once whereas the pixels in x1 and x3 may be touched
multiple times or never. Further, the order in which the incremental
transforms Tκ are applied does not affect the orthogonality of T , but
it may affect the energy concentration of the transform T .

2.2. Energy Concentration Constraint

The three Euler angles for each pixel touched by the incremental
transform have to be chosen such that the energy in image x2 is min-
imized. Consider the pixel triplet x1,i, x2,j , and x3,l to be processed
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by the incremental transform Tκ. To determine the Euler angles for
the pixel x2,j , we assume that the pixel x2,j is connected to the pix-
els x1,i and x3,l such that x2,j = x1,i = x3,l. Consequently, the
resulting high-band pixel x′′2,j shall be zero. Note that the pixels x1,i

and x3,l may have been processed previously by Tτ , where τ < κ.
Therefore, let v1 and v3 be the scale factors for the pixels x1,i and
x3,l, respectively, such that x

′
1,i = v1x1,i and x

′
3,l = v3x3,l. The

pixel x2,j is used only once during the transform process T and no
scale factor needs to be considered. But in general, when considering
subsequent dyadic decompositions with T , scale factors are passed
on to higher decomposition levels and, consequently, they need to be
considered, i.e., x′2,j = v2x2,j . Obviously, for the first decomposi-
tion level, v2 = 1. Let u1 and u3 be the scale factors for the pixels
x1,i and x3,l, respectively, after they have been processed by Tκ.
Now, the pixels x′1,i, x

′
2,j , and x

′
3,l are processed by Tκ as follows:(

u1x1,i

0
u3x1,i

)
= H3H2H1

(
v1x1,i

v2x1,i

v3x1,i

)
(6)

Energy conservation requires that

u2
1 + u2

3 = v2
1 + v2

2 + v2
3 . (7)

The Euler angle φ inH1 is chosen such that the two hypotheses x
′
1,i

and x′3,l are weighted equally after being attenuated by their scale
factors v1 and v3.

tan(φ) = −v1
v3

(8)

The Euler angle θ inH2 is chosen such that it meets the zero-energy
constraint for the high-band in (6).

tan(θ) =
v2√
v2
1 + v2

3

(9)

Finally, the Euler angle ψ in H3 is chosen such that the pixels x1,i

and x3,l, after the incremental transform Tκ, have scalar weights u1

and u3, respectively.

tan(ψ) =
u1

u3
(10)

But note that we are free to choose this ratio. We have chosen the
Euler angle φ such that the previous frame and the future frame have
equal contribution after rescaling with v1 and v3. Consequently, we
choose the scale factors u1 and u3 such that they increase equally.

u1 =

√
v2
1 +

v2
2

2
and u3 =

√
v2
3 +

v2
2

2
(11)

Similar to the work in [6], we utilize scale counters to keep track
of the scale factors. Scale counters simply count how often a pixel is
used as reference for motion compensation. Before any transform is
applied, the scale counter for each pixel is n = 0 and the scale factor
is v = 1. For arbitrary scale counter n andm, the scale factors are

v =
√
n+ 1 and u =

√
m+ 1. (12)

After applying the incremental transform, the scale counter have to
be updated for the modified pixels. For the unidirectionally motion-
compensated orthogonal transform in [6], the updated scale counter
for low-band pixels is given bym = n1 + n2 + 1, where n1 and n2

are the scale counters of the utilized input pixel pairs. For the bidi-
rectionally motion-compensated orthogonal transform, the updated
scale counters for low-band pixels result from (11) as follows:

m1 = n1 +
n2 + 1

2
and m3 = n3 +

n2 + 1

2
(13)

For example, consider the transform in the first decomposition
level where n2 = 0. The unidirectionally motion-compensated
transform increases the scale counter by 1 for each used reference
pixel, whereas the bidirectionally motion-compensated transform in-
creases the counter by 0.5 for each of the two used reference pixels.

3. DYADIC TRANSFORM FOR GROUPS OF PICTURES

The orthogonal transform in Section 2 is defined for three input pic-
tures but generates two temporal low-bands. In combination with
the orthogonal transform in [6], we are able to define an orthogonal
transform with only one temporal low-band for groups of pictures
whose number of pictures is larger than two and a power of two.

T (1)

T (2)

T (2)

T (2)

T (1)

T (2) T (1)

x1 � � �� � ��� ��y1

x2 � � ��y5

x3 �� � �� � ��y3

x4 �� ��y6

x5 �� � ��� � ��� ��y2

x6 � � ��y7

x7 �� � ��� ��y4

x8 �� ��y8

Fig. 2. Decomposition of a group of 8 pictures with orthogonal trans-
forms T (1) and T (2).

Fig. 2 depicts a decomposition of a group of 8 pictures xρ into
one temporal low-band y1 and 7 high-bands yρ, ρ = 2, 3, . . . , 8.

T (1) denotes a unidirectionally motion-compensated orthogonal
transform as presented in [6]. T (2) denotes a bidirectionally motion-
compensated orthogonal transform as introduced in Section 2. Note
that this architecture permits also block-wise decisions between uni-
directional and bidirectional motion compensation. This adaptivity
is used in the following experiments.

4. EXPERIMENTAL RESULTS

Experimental results assessing the energy compaction are obtained
for the CIF sequences Foreman, Bus, and Soccer. Our coding
scheme with the bidirectionally motion-compensated orthogonal
transform is compared to schemes which use a motion-compensated
lifted 5/3 wavelet with and without update step. In addition, the
performance of the unidirectionally motion-compensated orthogonal
transform [6] is reported.
For the coding process with the orthogonal transforms, a scale

counter n is maintained for every pixel of each picture. The scale
counters are an immediate results of the utilized motion vectors and
are only required for the processing at encoder and decoder. The
scale counters do not have to be encoded as they can be recovered
from the motion vectors.
All schemes operate with a GOP size of 16 frames as well as

with integer-pixel accurate motion compensation. The block size for
motion compensation is limited to 8 × 8. Conditional motion esti-
mation is used for bidirectional motion estimation. The same block
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Fig. 3. PSNR over the rate for the luminance signal of the CIF se-
quence Foreman at 30 fps with 288 frames.
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Fig. 4. PSNR over the rate for the luminance signal of the CIF se-
quence Bus at 30 fps with 64 frames.

motion fields are used for both orthogonal transform and 5/3 wavelet.
For simplicity, the resulting temporal subbands are coded with JPEG
2000. The temporal high-bands are coded directly, whereas the tem-
poral low-band is rescaled with (12) before encoding. Lagrangian
costs are used for optimal rate allocation. Note that the scale factors
of the temporal low-band are considered in the distortion term.

Figs. 3, 4, and 5 depict the rate distortion performances for the
luminance signals of the test sequences. Results for the bidirection-
ally motion-compensated (MC) orthogonal transform, the MC lifted
5/3 wavelet with and without update step, as well as for the unidirec-
tionally MC orthogonal transform [6] are given. In order to assess
the energy compaction, no intra modes have been used for all tem-
poral coding schemes. For all test sequences, the bidirectionally MC
orthogonal transform outperforms the unidirectionally MC orthogo-
nal transform. Further, the bidirectionally MC orthogonal transform
compares favorably with the MC lifted 5/3 wavelet with and without
update step.
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Fig. 5. PSNR over the rate for the luminance signal of the CIF se-
quence Soccer at 30 fps with 64 frames.

5. CONCLUSIONS

The paper presents a bidirectionally motion-compensated orthogo-
nal transform which strictly maintains orthogonality for any bidirec-
tional motion field. In terms of energy compaction, it outperforms
the unidirectionally motion-compensated orthogonal transform and
provides benefits over the motion-compensated lifted 5/3 wavelet.
The current implementation considers integer-pixel accurate motion
compensation. Applying the incremental orthogonal 3 × 3 trans-
form to pairs of input frames will yield more accurate motion com-
pensation. This is currently under investigation. In summary, the
orthogonality principle can be successfully combined with efficient
bidirectional motion compensation.
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