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ABSTRACT

This paper presents a novel classi cation strategy for 3D ob-
jects. Our technique is based on using a Global Geodesic
Function to intrinsically describe the surface of an object. The
choice of the Global Geodesic Function ensures the invari-
ance of the classi cation procedure to scaling and all isomet-
ric transformations. Using the Jensen-Shannon Divergence,
feature parameters are extracted from the probability distri-
bution functions of the Global Geodesic Function for each
one of the classes. These parameters are used in the decision
of a class membership of an object. This approach demon-
strates low computational cost, ef ciency, and robustness to
resolution over many different data sets.

Index Terms— Object classi cation, Geodesic, Jensen-
Shannon Divergence, Feature extraction.

1. INTRODUCTION

Research interest in 3D object analysis has witnessed an ex-
plosive growth over the last few years. While this may in
part be explained by an equally impressive growth in comput-
ing power, the availability of 3D data acquisition systems and
ready-access to it at relatively low cost, have been a key in ad-
dressing the numerous problems which arise in applications.
Laser scanners, ranging cameras and others have indeed made
solutions to multimedia applications, biometrics, and com-
puter graphics more realistic and affordable. The wide dis-
tribution of 3D data over the internet at no-cost is also testi-
mony to the high level of interest in the area [1], [2], [3]. Two
“face” and “vertex” matrices are the usual digital representa-
tion of a 2D surface, and are often of prohibitive size. This in
turn, unveils a computational challenge often encountered in
practice and particularly in 3D shape classi cation and recog-
nition applications. A number of approaches addressing this
issue have recently appeared in the literature. Shape distribu-
tion methods based on the probability density functions (pdf )
of features carrying intrinsic information about 2D surfaces
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(area, curvature, ...) are techniques that proved their simplic-
ity and effectiveness for objects’ classi cation [4]. However,
the performances of these shape descriptors are directly re-
lated to the choice of the shape function and its properties. In
[5], a shape function based on the geodesic distance between
points on the surface was proposed. The invariance properties
of this function to object pose meet the requirements stated
earlier for a unique surface characterization.
In this work we propose to use an approximated, yet an as ef-
cient Global Geodesic Function (GGF) to describe 3D ob-
jects. The statistical variability of this new shape function
is analyzed using an information theoretic measure known
as the Jensen-Shannon Divergence (JSD) [6]. To ef ciently
compare objects, we characterize each class of objects by two
parameters in the learning stage. This drastically simpli es
the search in a testing evaluation. In addition, we introduce
a more discriminative comparison of objects by de ning an
interval based JSD. The remainder of the paper is organized
as follows. The next section gives a formulation of the prob-
lem along with a presentation of the key tools that are used
namely the GGF, the JSD and the zoom-in operation. The
detailed algorithm is explained in Section 3. In Section 4, ex-
perimental results demonstrate the robustness and ef ciency
of the method. Finally, Section 5 summarizes the paper and
discusses future work to address outstanding issues.

2. PROBLEM STATEMENT AND BACKGROUND

Given a set of N classes of objects { C1, C2, . . . , CN} , our
goal is to decide on a class membership of an object O. To
ef ciently carry out such a task, we describe an object with
an appropriate shape function, i.e., the GGF. Using the JSD
we compare the statistical properties of two different GGFs.

2.1. Global Geodesic Function

A 3D object may be viewed as a 2D surface S embedded in
R
3. Our goal is to make our characterization of the surface
invariant to non-elastic deformations, also referred to as iso-
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Fig. 1. Invariance to isometric transformations: (A) Original
pose (B) Same subject after deformation and noise addition.
At the bottom the pdf of GGFs.

metric transformations. Thus, we should uniquely represent
two isometric surfaces S and Ś.

De nition: (Isometric surfaces) We say that two surfaces S
and Ś are isometric if there is a bijective function f
between S and Ś such that:

∀p, q ∈ S, d(p, q) = d(f(p), f(q)), (1)

where d(p, q) is the shortest path between the two points p and
q along the surface of interest, also called geodesic distance.
This de nition includes transformations such as transla-

tions, rotations and all non-elastic deformations. This implies
a natural choice of a geodesic distance to describe a given ob-
ject. Fig.1 illustrates a practical example where isometries are
encountered and similarly represented by a geodesic function.
The independence of the selected shape function of any ref-
erence point is also an important property, which thus de-
nes, as rst introduced in [7], an intrinsic global function

g(p) =
∫

q∈S
d(p, q)dS at each point p on the surface S.

Assuming that the mesh representing a surface is uniform
and suf ciently ne, we consider the approximated and dis-
crete form of g(·) as g(pi) =

∑m
j=1 d(pi, pj)δSj , where pi,

i = 1, . . . , m, are all the vertices constituting the mesh, and
δSi is the area that a vertex pi occupies.
Based on our assumption on the quality of the mesh, δSi may
be considered small, constant and equal to δS. We may hence
achieve the property of scale invariance by normalizing the
function g(·) by its maximum value over all vertices.

gn(pi) =
g(pi)

maxj=1,...,m g(pj)

=

∑m
j=1 d(pi, pj)δS

maxj=1,...,m

∑m
k=1 d(pj , pk)δS

=

∑m
j=1 d(pi, pj)

maxj=1,...,m

∑m
k=1 d(pj , pk)

, (2)

where the subscript n denotes normalization. This opera-
tion ensures the convergence of gn(·). The function gn(·)
is what we refer to as the GGF. It ranges over ]0,1], with
the zero value being, in theory, unattainable. Some exam-
ples are shown in Fig.2. In practice, the GGF for each ver-

Fig. 2. Examples of the global geodesic function on different
3D objects.(Best visualized in color)

tex is obtained by computing the latter’s geodesic distance to
all other vertices. This normalization also obviates explicit
computation of a surface element. This is ef ciently realized
with the well known Dijkstra algorithm whose complexity is
O(N2 logN) [8].

2.2. Statistical Analysis

2.2.1. Jensen-Shannon Divergence

The comparison of the statistical properties of two distinct
distributions of the GGF may be carried out by the JSD. The
JSD, indeed, enables us to quantify the difference between an
arbitrary number of pdf s and is de ned for two distributions
P1 and P2 as follows:

JSD(P1, P2) = H

⎛
⎝ ∑

l=1,2

1
2
Pl

⎞
⎠ −

∑
l=1,2

1
2
H (Pl) , (3)

where H is the Shannon entropy de ned by
H

(
Pl

)
= −∑L

i=1 Pl(i) logPl(i), with l = 1, 2, and Pl(i),
i = 1, . . . , L, are the elements of the discrete pdf vector Pl.
It has been proven in [?] that in the framework of information
theory the JSD may be interpreted as the mutual information
between shape descriptors. We use this information to deter-
mine a characteristic resolutionR 1 for each 3D object.
We start by considering K different resolutions, R0 > R1 >
. . . > RK−1, for the same object O and theK corresponding
pdf s PRi , i = 0, 1, . . . , K − 1 of the GGF. That is we repre-
sent the surface ofO withRi points and compute theGGF on
each one of them to nally get the resulting distribution PRi

.
We de ne

ζ(Ri) =
(
JSD(PR0 , PRi)− JSD(PR0 , PRi+1)

)2
. (4)

The characteristic resolutionR of the object O is then:

R = arg max
i=1,...,K−1

(ζ(Ri)) . (5)

The parameter R translates the trend observed for all 3D
objects, as illustrated, for instance, for the object tiger in Fig.

1Resolution: is the number of vertices used to represent the surface of an
object

I ­ 646



a b c d e f

Fig. 3. Illustration of the visual effect of resolution reduction
on the GGF of a 3D object. Resolution is decreasing from
(a) to (f). An abrupt change in the GGF occurs at (d).(Best
visualized in color)

3. R is basically the resolution at which an abrupt and sharp
change in the overall distribution of the GGF occurs. Any
lower resolution will then fail to exhibit the desired invariance
of the distribution of the GGF for an object O.

2.2.2. Zoom-in Operation

To detect dissimilarities between two objects from the same
class Oj and Ok, with j �= k, we compare the corresponding
pdf s over smaller regions of their support, which we focus on
by a zoom-in operation. To that end, denote byL the maximal
support of the two pdf s (histograms) P (j) and P (k) of the
GGFs for Oj and Ok, respectively. We proceed by looking
at N xed intervals Li, with ∪N

i=1Li = L and Li ∩ Lj = ∅
if i �= j. We compute over each interval the normalized pdf s
P (j)(Li) and P (k)(Li). The JSD between the two objects is
now a function of the interval Li and is de ned as

α(Li) = JSD
(
P (j)(Li), P (k)(Li)

)
. (6)

Establishing a critical region over which two pdf s are most
similar, namely L0 = argmini=1,··· ,N α(Li), we rede ne
our interval of interest as λ = L − L0. The interval λ, hence,
includes the largest dispersion between Oj and Ok.

3. PROPOSED CLASSIFICATION APPROACH

With the tools described in Section 2 in hand, we propose a
classi cation strategy that heavily relies on a training proce-
dure. During the training, a class parametrization is achieved.
To further re ne discrimination among objects, we introduce
a post processing zoom-in procedure on pdf s’ comparison to
focus on more detailed dissimilarities among objects from the
same class.

3.1. Class Characterization

As de ned in Eq. (5), we determine a characteristic resolution
Ri for each training object Oi, i ∈ Ω = {1, . . . , M}, from
a class C. We obtain a class characteristic resolution as be-
ing the maximum of all the characteristic resolutions within
that class, i.e., RC = maxi=1,...,M{Ri}. Upon establishing

Fig. 4. Algorithm of the discrete classi cation decision for 3D
objects. N classes andX super-classes are represented. They
are arranged according to increasing values of their character-
istic resolutions Ri. Parametric comparison between object
O and classes is represented by circular shapes.

RC , any comparison within a class is carried out at RC . We
compute a pairwise JSD among all training objects in C. The
largest value obtained from the last JSDs is the highest devi-
ation that no object within a class C would never exceed. A
threshold τ = maxi,j∈Ω{JSD(P (i), P (j))} is hence de ned
as a second class characteristic parameter.

3.2. Algorithm

The distinct steps of the algorithm are sketched in Fig. 4, and
summarized next.

1. De ne N object classes {C1, C2, . . . , CN}.
2. In the learning phase, associate to each class Ci a cor-
respondingRCi and the threshold τ(Ci).

3. Sort all classes in an increasing resolution orderRCi
.

4. Construct super-classes by merging classes sharing the
same parameterRCi .

5. Start from the lowest resolutionRC1 and set l = 1.

6. Compute the GGF of O at R(Cl) and get its resolution
parameters.

7. Compare the resolution parameters of O with those of
Cl. If similarity is established, i.e., decision is 1;

• Termination of search if Cl is a class.
• Apply τ -thresholding if Cl is a super-class.

Otherwise the decision is 0 and l = l + 1.
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Fig. 5. Illustration of the τ -thresholding for super-classes

a b c

Fig. 6. Detection of the area of dissimilarity between two
airplanes using the GGF (White blob in c).

8. Go to 6.

9. Repeat operations until a decision 1 is reached.

4. EXPERIMENTAL RESULTS

An important characteristic of a classi cation algorithm is its
consistent performance independently of what data-base or
measurement system the data originates from. So as long as
the format is in readable form, we have shown that our pro-
posed approach enjoys such a property. We made extensive
use of Princeton’s benchmark [?] for all our learning and test-
ing. We have subsequently tested data from INRIA’s bench-
mark [?] to validate our claim. We have set the tolerance deci-
sion for parameters’ similarity to 10% as a maximum absolute
error |Rlearning−Rtesting|

Rlearning
. The corresponding overall recog-

nition performance, i.e., number of correct decisions over all
the testing experiments, is 93.88%. This result re ects the
combined usage of the parameters R and τ . Indeed, the τ
thresholds contributed in improving the nal performance as
they permitted to separate the classes having close values for
the parameterR. In Fig. 5, we illustrate an example of confu-
sion among the two super-classes of pigs and dogs and show
how it is solved using the second class parameter τ which,
in this case, is a vector whose elements are thresholds com-
puted at different sampling rates, i.e., numbers of bins used to
compute the histogram of the GGF.

The GGF is suf ciently powerful to detect and measure
dissimilarity for even relatively close 3D objects. In Fig. 6.,
applying the zoom-in at λ = 1/10, we look at the area of high-
est difference between two airplanes. In (a), a commercial
airplane is represented. In (b), a more recent model of com-
mercial airplane is shown. The zoom-in technique highlights
in (c) (in white) the difference in λ-surface subsection. This
difference restricted to the fuselage, is intuitively pleasing as
it con rms our visual interpretation of a fatter rst airplane.

5. CONCLUSION

In this paper, we presented a new 3D object classi cation
strategy based on two feature parameters. We have shown
that it generally provides a quick discrete decision on object
comparison. The technique is based on the statistical prop-
erties of the GGF which, in turn, provides very interesting
advantages such as robustness to noise, complexity of rep-
resentation, and invariance to isometric transformations and
scaling. Moreover, a new and precise dissimilarity evaluation
has been introduced. A rst estimation of the accuracy of this
technique is of 93.88%. Additional work is required for a
more thorough evaluation.
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