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ABSTRACT

Rotation is one of the most basic transformations that can re-
late two images. Two determine if two images are rotated ver-
sions of each other, one can either exhaustively rotate them in
order to nd out if the two match up at some angle, or al-
ternatively extract features from the images that can then be
compared to make the same decision. In this paper, we will
propose a novel method for extracting the components of an
image that are invariant to rotation based on the Fourier Trans-
form. We will compare the performance of the algorithm to
the exhaustive search method and show that this is a much
faster technique, that is also accurate in matching rotated im-
ages.

Index Terms— Image matching, Image Analysis, Image
Processing, Image Texture Analysis, Image Retrieval, Rota-
tion Invariance

1. INTRODUCTION

Invariance is a concept that is of extreme importance in many
Image Processing applications. This importance has its roots
in the way that we humans process visual information and an-
alyze the images that are captured by our eyes. Invariance
with respect to orientation, scale, and translation are essential
for a human vision system to be able to function properly, rec-
ognizing objects, locations, and basically understanding im-
ages. In this paper, we will address the issue of invariance
with respect to rotation from a signal processing perspective.
The issue of rotation-invariance has been extensively ex-

plored in the literature in the past. There has been work done
in the optics community, the signal processing community
[1, 2, 3], and the computer vision community [4, 5, 6, 7, 8, 9],
and due to the different applications at hand, they have devel-
oped different methods for this purpose.
Probably the best-known signal processing approach to

achieving rotation-invariance is the Fourier-Mellin Transform
(FMT) [10, 11, 1]. This transformation involves taking the
magnitude of the two dimensional Fourier Transform (FT)
of the image, followed by a conversion to log-polar coordi-
nates. This is then followed by a Mellin Transform (MT)
which achieves invariance to rotation, translation, and scale.
The applications in the computer vision community are more
concerned with object recognition, and multi-view automatic

scene matching. As a result, more work is done toward devel-
oping local image features that are invariant to rotation, scale,
and other transformations. The best-known work in this eld
is described in [9]. In this paper, Lowe develops a scale and
rotation invariant local feature detector and also a descriptor
that is invariant to both of these transformations. To achieve
rotation invariance in the descriptor, a dominant orientation
is determined by looking at the local image gradients at the
point of interest, and the features in the descriptor are essen-
tially rotated to offset this dominant orientation, resulting in
a rotation-invariant descriptor. This method of using a dom-
inant orientation for achieving invariance to rotation has be-
come the method of choice by many [9, 7, 4].
There has also been somework in the area of af ne-invariance,

which deals with almost all types of image transformations
that are possible under everyday conditions, and not just rota-
tion and scale changes [4].

2. ROTATION INVARIANCE

2.1. Representation

The Cartesian coordinate system is very awkward for dealing
with rotation. The polar coordinate system is a much more
natural domain for such tasks. Once in the polar coordinte
system, the rotation operation is transformed into a circular
shift in the angle axis, and becomes much more easier to deal
with. We thus describe the images, or image patches using
a polar coordinate frame such that p(x, y) → p(r, θ). For
image patch p, where r =

√
(x− x0)2 + (y − y0)2, θ =

arctan
(

y−y0

x−x0

)
, and (x0, y0) is the center of the image patch.

2.2. Invariance

Every image patch contains components that are inherently
invariant under rotation. The most obvious and simple of
these components is the DC component of the pixels inten-
sities. In other words, the average intensity. This intuitively
makes sense and is obviously seen if we look at the Fourier
representation of the patch. Another well-known rotation in-
variant representation of an image patch is its color-histogram.
Such a histogram represents the distribution of different col-
ors in the patch, and so would not be affected by any transfor-
mation that would preserve this distribution. In the absence
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of noise, rotation would completely preserve the distribution
of colors in an image patch, and thus its color-histogram.
The mentionedmethods for patch representation however,

allow for too many degrees of freedom. In other words, there
are too many transformations and deformations of a patch
that would yield the same feature, and this leads to the false
matching of patches that are not the same. We will now de-
scribe a method for an image descriptor that attempts to only
discard the rotation-variant components of the image.

2.2.1. Fourier representation of image patches

An equivalent method of representing the polar image patch
would be to describe it using its Fourier coef cients at each
radius. In other words, we can treat p(r, θ) as separate signals
for all values of r and take their Fourier Transforms along the
θ axis. We then have

P(r, ω) =

∫
∞

−∞

p(r, θ)e−jωθdθ (1)

Now, in the discrete case, this becomes

P[n, k] =

Nθ−1∑
l=0

pn[l]e
−j2πl k

Nθ (2)

where pn[l] represents the patch at the nth radial distance for
discrete angle values l.

2.2.2. Rotation-Invariance through Shift-Invariance

As previously mentioned, with the conversion to polar repre-
sentation, any rotation in the image patch is transformed into
a circular shift along the θ axis. Thus, the task of determin-
ing the rotational transformation between two image patches
is now a phase-difference-estimation problem which has been
addressed for many other applications in array signal process-
ing. Looking at the representation that we have for the im-
age patch, we see that the phase of the Fourier representation
contains the rotation information in the image, thus rotation
would have no effect on the magnitude. We have

|F(pr(θ − θ0))| = |e
jωθ0Pr(ω)| = |F(pr(θ))| (3)

So, in the continuous case, any linear shift along the θ direc-
tion (i.e. rotation) would be discarded. In the discrete case,
this linear shift becomes a circular shift:

|F(pn[l−m])| = |

m+Nθ−1∑
k=m

pn[k −m]e
−j2π k

Nθ | (4)

= |e
−j2π m

Nθ F(pn[l])| = |F(pn[l])|(5)

We now have a descriptor that is invariant to rotation. This
descriptor however has one major problem. The DC compo-
nents of the Fourier magnitudes are much more pronounced
than those of the higher frequency bins.

2.3. Frequency Scaling

As mentioned before, the current descriptor has a large bias at
DC. This bias makes it dif cult to distinguish between unre-
lated patches. In order to emphasize the effects of the higher
frequency components, we will scale the frequencies such
that the higher frequencies are weighted more than the lower
frequency components. In our experiments, we use a loga-
rithmic scale, which was empirically determined to give good
results.

3. PHASE ENTANGLEMENT

3.1. Problem Statement

There is still one major problem with the derived rotation-
invariant descriptor. Too much information is lost when we
ignore the phase. The phase in fact contains more informa-
tion than just the rotation angle between the two compared
patches, which is the overall phase difference.
When phase is ignored as described in the previous sec-

tion, too much rotational freedome is allowed in the patches.
Basically, radial components (circularly sampled signal at each
radius) are allowed to have independent rotations. For exam-
ple, the two patches in Figure 1 would yield the same descrip-
tor under the current formulation. This allows so much free-
dome, that even unrelated patches can yield high correlation
values. Mathematically, we have the following:

(a) (b)

Fig. 1. The two image patches yield identical descriptors when phase is completely
ignored.

p[n, l] =

⎛
⎜⎝

p
1
[l]
...

pNR
[l]

⎞
⎟⎠ (6)

where p[n, l] is the matrix containing the polar representa-
tion of the image patch and pi[l] represents the sample of this
patch at radius i. NR is the number of discrete values at which
the patch radius is measured. Then let P[n, k] be the matrix
containing the Fourier coef cients of p[n, l]. Let us now de-
note the matrix containing the magnitudes of these Fourier
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coef cients as |P[n, k]|NR×Ω, where Ω is the number of dis-
crete frequency bins. This constitutes our rotation-invariant
descriptor. Now, imagine that we have two patches p and q,
such there are independent rotations φi at every radial value i
between the two images. So,

q[n, l] = p[n, l − φ[n]] (7)

where φ[n] is the discrete radius-dependent rotation (in sam-
ples). And

|Q[n, k]| =

⎛
⎜⎜⎝

|e−j2π
φ1

Ω P1[l]|
...

|e−j2π
φNR

Ω PNR
[l]|

⎞
⎟⎟⎠ = |P [n, k]| (8)

And thus the descriptors are equivalent.

3.2. Entanglement

We would like to remove all the rotational information be-
tween the two images, and yet preserve the phase relationship
that exists at different radial values. In other words, we want
the descriptor to change signi cantly if we have a rotation
at some radii and not the whole patch. This implies that we
should create a descriptor where independent phase changes
would also affect the magnitudes, unless the phase change is
uniform across all radii.
To achieve this, we note that if we add two signals, then

a linear shift in either one would change the magnitude of
the Fourier representation of the summation. Similarly, if we
add the different radial samples of a patch, then a shift in one
would affect the magnitude of the descriptor. So, instead of
using the simple polar representation of the image patch to
compute the rotation-invariant descriptor, we will use linear
combinations of the rows of the polar representation instead.
We thus have ψi[l] =

∑NR

j=0
Wijpj [l], where ψi[l] is a lin-

ear combination of the rows pj of the original image patch
p[n, l]. This can be formulated very conveniently in matrix
notation as ψ = Wp, where W is a weight matrix of size
NR ×NR. Note that in order to preserve the most amount of
information,W must have full rank to produce NR linearly
independent row vectors. Now if we haveΨ = F{Wp} and
Γ = F{Wq}, then

|Γn[k]| = |

NR∑
l=1

WnlQ l[k]| (9)

|Ψn[k]| = |

NR∑
l=1

Wnle
−j2π

φl
Ω Ql[k]| (10)
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Fig. 2. Performance of the proposed algorithm vs. exhaustive search. The curves
with the diamonds are those of the exhaustive technique, and the ones without, are those
of the proposed method. The solid lines correspond to an added Zero-Mean Gaussian
noise with variance of 0.001, the dahsed lines correspond to that of variance 0.01, and
the dotted line corresponds to a variance of 1.
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Fig. 3. Performance of the proposed algorithm vs. exhaustive search. The curves
with the diamonds are those of the exhaustive technique, and the ones without, are those
of the proposed method.The solid lines correspond to an added Speckle noise with vari-
ance of 0.016, the dahsed lines correspond to that of variance 0.128, and the dotted line
corresponds to a variance of 0.512.

Now if φ1 = φ2 = · · · = φNR
= φ, then we have

|Ψn[k]| = |

NR∑
l=1

Wnle
−j2π

φ
Ω Qn[k]| (11)

= |e−j2π
φ
Ω

NR∑
l=1

WnlQn[k]| = |Qn[k]| (12)

We now have an entangled set of phases for each radius, which
ensures that the descriptor remains the same only if there is
an overall rotation of the image patch.

4. EXPERIMENTAL RESULTS

To test the performance of the proposed rotation-invariant trans-
formation, the algorithm was run on a database of 512 im-
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Fig. 4. Performance of the proposed algorithm vs. exhaustive search. The curves
with the diamonds are those of the exhaustive technique, and the ones without, are those
of the proposed method.The solid lines correspond to an added Salt & Pepper noise with
variance of 0.1, the dahsed lines correspond to that of variance 0.3, and the dotted line
corresponds to a variance of 0.6.

ages of size 100×100 and 9 different rotation angles at in-
crements of 40 degrees. The correlation coef cients of the
comparisons of the different rotation angles (of the same im-
age), and their correlation with other random images (taken
from the database) were used as a measure of the algorithm’s
performance. This is then compared to the performance of
an exhaustive search algorithm, where the two images are ex-
haustively rotated to achieve the highest possible correlation
value. The correlation coef cient threshold is varied in order
to generate the ROC curves for the full range of match and
mismatch probabilities. Note that in a practical environment,
it may not be possible to rotate the two images at all angles,
furthermore,when rotating an image in Cartesian coordinates,
parts of the image may be cropped to keep the same size. This
was compensated for in our experiments. The performance
graphs shown in Figures 2,3, and 4 show the performance of
the system under three different noisy settings. We can read-
ily see that in all cases, the proposed system is quite compara-
ble to the ideal exhaustive search system. In fact, under high
noise conditions, the proposed technique outperforms the ex-
haustive method.

5. CONCLUDING REMARKS

We have presented a method for describing the rotation-invariant
components of images. We showed that identifying images
that only differ by a rotation can be effectively and quickly
done using the this technique, which has applications in Content-
Based Image Retrieval and Image Registration. It is shown
that the performance of the proposed method is comparable
to the exhaustive search for the rotation of the two images.
However, there is still room for improvements. A random
matrix is used as the entanglement weight matrix W, which
may not contain the optimal set of weights. The amount of

discretization of the angle as a function of the size of the
image must also be investigated. As the size of the image
becomes larger, there needs to be more samples allocated to
convert the image at larger radii into its polar representation,
but exactly what the relationship is must be determined. Fi-
nally, the frequency scaling that is used to diminish the bias
of the DC components of the image is empirically determined
and a logarithmic scale was used; a more optimal scaling may
exist, and is worthy of investigation.
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