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ABSTRACT
In non-intrusive forensic analysis, we wish to find information and
properties about a piece of data without any reference to the original
data prior to processing. An important first step to forensic analysis
is the detection and estimation of block processing. Most existing
work in block measurement uses strong assumptions on the data re-
lated to the block size or the method of compression. In this paper,
we propose a new method to estimate the block size in digital images
in a blind manner for use in a forensic context. We make no assump-
tions on the block size or the nature of any previous processing. Our
scheme can accurately estimate block sizes in images up to a PSNR
of 42 dB where block artifacts are perceptually invisible. We also
offer a measure of detection accuracy which correctly classifies an
image as block-processed with a probability of 95.0% while keeping
the probability of false alarm at 7.4%.

Index Terms— Image and video forensics, image coding, image
block size estimation, block artifact analysis

1. INTRODUCTION

Traditional approaches to multimedia security protect content using
additive operations. For example, watermarking embeds a signal im-
perceptibly such that the additive signal is robust and traceable. In
order to add the watermark, we require access to the original host
signal. However, in many scenarios, we may not even have access to
the host signal, and therefore we cannot enforce protection through
any extrinsic means. With non-intrusive forensic analysis, the foren-
sic analyst only has access to an output signal in a raw format, with-
out any header information or metadata. Past operations performed
upon the signal leave artifacts which become an intrinsic part of the
signal, much like a fingerprint. We analyze these artifacts to identify
the history of operations.

There are many useful purposes of a non-intrusive forensic sys-
tem. For example, we often wish to determine the specific encoding
mechanism used within a broad category of coders to detect poten-
tial patent infringement. This service is essential for detecting in-
fringement in software and hardware products that are distributed
for profit. By analyzing the artifacts that lossy coders leave behind,
we can tell which coder was used along with its parameters. We can
also certify the datapath integrity of our data. The creation, coding,
and delivery of multimedia data constitutes a unique datapath. To
ensure that the received data has been processed by the appropriate
trusted entities, we must validate the datapath by identifying each of
its steps: acquisition, source coding, channel coding, and transmis-
sion. We assess the authenticity of the received data by identifying
the particular mechanism used in each step of the datapath along
with its parameters.
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To even begin forensic analysis for digital images, we must first
address the presence of block processing on our image data. For
forensic analysis of block-based coding schemes, estimating the block
size is an obvious and crucial first step, because inaccurate block size
estimation can possibly invalidate subsequent forensic tests. For ex-
ample, suppose we wish to determine the quantization scheme ap-
plied upon a single 8-by-8 block along with the quantization param-
eters without any knowledge of the coding scheme. If we incorrectly
estimate that the block size is 16-by-16, then our forensic system
will attempt to detect quantization parameters for four 8-by-8 blocks
simultaneously, which will result in a faulty analysis.

Block artifact measurement is a well-established research area,
with purposes primarily related to image restoration and distortion
measurement. However, artifact measurement for the purpose of
forensic analysis has not been explored. Here, we pose the follow-
ing question: given a compressed image, can we detect the presence
of block processing? If so, can we estimate the block size? Exist-
ing work in block artifact measurement is not tailored to answer this
question due to strong assumptions placed upon the input data. For
example, typical block artifact measurement and reduction methods
such as the methods by Minami and Zakhor [1], Liu and Bovik [2],
Weerasinghe et. al.[3], and Gao et. al.[4], all assume a priori that
the image data is compressed through an established scheme such as
JPEG or MPEG, with a fixed block size of 8-by-8 or 16-by-16. In a
forensic scenario, we have no idea of the block size. For example,
JPEG2000 has the option of tiling the image using any block size,
up to the size of the entire image, before coding. Some fractal and
vector quantization coders use block sizes as small as 2-by-2. Rect-
angular block sizes are also not uncommon. Given this problem, we
need a scheme that does not rely on such strong assumptions regard-
ing the block size.

In this paper, we propose a novel scheme to detect the presence
of block processing in an image along with the estimation of the
block size. This scheme obtains a one-dimensional block artifact
signature for both horizontal and vertical dimensions. We estimate
the block size by using maximum-likelihood estimation of the pe-
riod in the block artifact signature. Next, we propose a measure of
detection accuracy in a binary hypothesis test where H0 represents
the absence of block processing and H1 represents the presence of
block processing; this measure can acheive a very high probability
of detection while keeping the probability of false alarm low.

2. BLOCK SIZE ESTIMATION

Block artifacts appear as artificial discontinuities within an image.
By observing the gradient separately along each dimension, and then
averaging this data along the orthogonal direction, we find where
block differences occur most often.

Let X be the input image of size M × N , and X(i, j) be the
luminance value of pixel (i, j), where i ∈ {0, ..., M − 1} and j ∈
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Fig. 1. The signals d, dm, and dp for JPEG-compressed Lena with
a block size of 16.

{0, ..., N −1}. The entire following procedure is performed once in
the horizontal direction and again in the vertical direction.

First, obtain the gradient image along a desired direction. For
example, we operate along the vertical direction shown below.

D(i, j) = X(i, j)−X(i− 1, j) i ∈ {1, ..., M − 1} (1)

Then obtain the average of the gradient magnitude by averaging
along the orthogonal direction. For example, we now average along
the horizontal direction.

d(i) =
1

N

N−1�
j=0

|D(i, j)| i ∈ {1, ..., M − 1} (2)

Let B be the block size, if it exists. If block processing is present, the
one-dimensional signal d will have peaks at multiples of the block
size (i.e., at i = kB, for k ∈ Z) superimposed upon a low-frequency
signal. To extract these peaks, we use median filtering which elim-
inates outliers from a signal. In this case, the outliers are the peaks
located at i = kB for k ∈ Z. Let dm be the median-filtered version
of d. If we subtract dm from d itself, we will obtain the peaks in d
which we call dp, the one-dimensional block artifact signature.

dm(i) = med {d(i− 1), d(i), d(i + 1)} (3)

dp(i) = d(i)− dm(i) (4)

Figure 1 shows the signals d, dm, and dp for the 512-by-512 test
image Lena which has been JPEG-compressed using a block size of
16. The resulting signal dp is approximately periodic. Specifically,
we expect dp to resemble an impulse train, where the magnitude of
the impulses is determined by the strength of the block artifacts, and
the period of the impulses is determined by the block size.

One problem we face is the presence of spurious peaks in the
signal dp as a result of edges from objects in the image. Note that
an edge of an object will have the same gradient direction along its
entire length. However, the gradient direction of block artifacts will
oscillate; in other words, the gradient direction of a block artifact is
about as likely to be positive as it is negative. If we were to sum the
gradients along a block artifact boundary, the values would cancel
out and the sum would be close to zero. However, if we were to
sum the gradients along an object edge, the sum would be large in

magnitude. Therefore, we perform the following check. Let the
signal c(i) be a sum of the gradients, not the gradient magnitudes.

c(i) =
1

N

N−1�
j=0

D(i, j) i ∈ {1, ..., M − 1} (5)

A peak in this signal will indicate the presence of an edge. Therefore,
we find cp = c − cm, where cm is a median-filtered version of c.
Then we set dp(i) = 0 for all i where cp(i) > τ , for some suitable
threshold τ . Our experiments indicate τ = 5.0 to be a threshold
which eliminates false peaks while preserving the true peaks.

The periodicity of dp allows us to use a maximum-likelihood
estimation scheme used in pitch detection [5] to determine the period
of the signal dp. Suppose that dp consists of a known periodic signal
s plus zero-mean i.i.d. Gaussian noise.

dp(i) = s(i) + n(i) i ∈ {1, ..., M − 1} (6)

Let us express the signal s as a periodic repetition of a signal q with
period B:

s(i) = q(i mod B) (7)

The conditional probability density function of dp is

p(dp|s, σ2, B) =
1

(2πσ2)
M−1

2

exp

�
− 1

2σ2

M−1�
i=1

(dp(i)− s(i))2
�

(8)
where σ2 is the variance of the noise n(i). We should note that the
noise signal n is not exactly Gaussian. Due to the nature of the me-
dian filter, we can model n(i) as a mixed random variable where the
probability density function has an impulse at i = 0 and is Gaus-
sian otherwise. Nevertheless, since n is approximately Gaussian,
we continue to apply maximum-likelihood estimation and ultimately
achieve excellent results.

To obtain the maximum-likelihood estimate, we maximize the
conditional probability density function p(dp|s, σ2, B) with respect
to the signal parameter s, the noise variance σ2, and the period B.
Define the set I(i; B) = {kB + i|k ∈ Z} ∩ {1, ..., M − 1}. Our
ML estimate for the signal s with respect to B is then

ŝ(i; B) = q̂(i mod B; B) (9)

where

q̂(i; B) =
1

|I(i; B)|
�

l∈I(i;B)

dp(l) (10)

The variance in the noise n is estimated as

σ̂2(B) =
1

M − 1

M−1�
i=1

(dp(i)− ŝ(i; B))2 (11)

Finally, it can be shown that the estimated period B̂ which maxi-
mizes p(dp|s, σ2, B) is achieved by minimizing the estimated noise
variance σ̂2(B) as a function of B:

B̂ = argmin
B

σ̂2(B) (12)

This is our estimate for the block size along one dimension (e.g., the
vertical dimension). We repeat the process for the other dimension
to obtain the estimate for the block size in both dimensions.

Another problem we face with this scheme is that σ̂2(B) =
σ̂2(kB) for all k ∈ Z. We avoid this problem by using a modified
estimate for q:

q̂(i; B) =

�
1

|I(i;B)|
�

l∈I(i;B) dp(l) i = 0, 1, B − 1

0 otherwise
(13)
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Fig. 2. Noise power σ̂2(B) for JPEG-compressed Lena with a block
size of 16, the power in the observed signal dp, and the modified
noise power. Each triangle mark corresponds to a multiple of 16.
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Fig. 3. Noise power σ̂2(B) for uncompressed Lena. Note how the
observed signal power is lower when block processing is absent.

This choice of q̂ significantly reduces the chance of incorrectly ob-
taining a multiple of the true block size as our estimate. The plot of
σ̂2(B) is shown in Figure 2. Maximum-likelihood estimation easily

estimates the correct block size, B̂ = B = 16.

3. DETECTION ACCURACY

After having found an estimated block size B̂, we still ask ourselves
how accurate our estimate is, and if block processing is truly present.
We can answer this question by considering a simple detection prob-
lem with the following two hypotheses:

H0 : dp = n
H1 : dp = s + n

(14)

Once again, dp is the one-dimensional block artifact signature (i.e.,
the observed signal). Detection of H1 implies that our block size
estimate is correct, while H0 corresponds to an incorrect block size
estimate or an absence of block processing. Actual execution of a
likelihood ratio test requires exact knowledge of s which we don’t
have. However, we know that the probability of detection PD and
the probability of false alarm PF for this test depends on the signal-
to-noise ratio in the observed signal dp. For a high SNR, it is easy to
detect the presence of the signal s (i.e., detect H1). For a low SNR,
PD ≈ PF for any test, and it is difficult to distinguish between H0

and H1. Therefore, we use the signal-to-noise ratio as a measure
of our detection accuracy. Figures 2 and 3 illustrate the fact that
the observed signal power is much greater when block processing is
present versus when it is absent.
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Fig. 4. Block size estimation results for Lena in the vertical dimen-
sion (left) and the horizontal dimension (right).

Since s and n are independent and n is zero mean, we know that
the power in the observed signal dp is equal to the power in s, which
we call Ps, plus the noise power σ2. Therefore, the SNR is

SNR =
Ps

σ2
=

Pdp − σ2

σ2
(15)

Calculating the SNR directly using the signal estimate ŝ could be
inaccurate since it relies on the accuracy of the signal estimate itself.
In practice, we will use the observed signal-to-noise ratio (OSNR)
for our measure of detection accuracy

OSNR =
Pdp

σ2
(16)

which we see is clearly related to the SNR.

For our noise variance, we could simply use the value σ̂2(B̂)
estimated earlier. However, since s is not exactly periodic, the vari-
ance in the peaks of s will erroneously contribute to the noise vari-
ance. As a result, for the purpose of calculating the SNR, we use a
modified estimate for our noise variance. Define the set Ĩ(i; B) =
{1, ..., M − 1}\{kB + i|k ∈ Z}. Our modified estimate is

σ̂2 =
1

|Ĩ(0; B̂)|
�

i∈Ĩ(0;B̂)

(dp(i)− ŝ(i; B̂))2 (17)

In other words, we do not count the variation in the peaks of s to-
ward the noise variance. The value of the modified noise variance is
illustrated in Figure 2 as the bottom line. We observe that the value

lies slightly below the minimum variance σ̂2(B̂) as expected (where

B̂ = B = 16).

4. RESULTS

Figures 4, 5, and 6 show plots of the block size estimation results
for the standard test images Lena, Goldhill, and Baboon. We test
for block sizes 4, 8, 16, 32, and 64. To create our block-processed
images, we use JPEG compression with quality factors from 20 to
90, though any block processing operation will yield similar results.
Each circle represents correct estimation, and each star represents
incorrect estimation.

We see that correct estimation varies as a function of both PSNR
and block size. Naturally, the strength of block artifacts decreases as
image quality increases. As block size increases, the signal s has
fewer periods, and therefore our estimate ŝ is less accurate. For ex-
ample, as shown in Figure 4, the estimation accuracy for compressed
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Fig. 5. Block size estimation results for Goldhill in the vertical di-
mension (left) and the horizontal dimension (right).
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Fig. 6. Block size estimation results for Baboon in the vertical di-
mension (left) and the horizontal dimension (right).

Lena with block sizes of 4 and 8 in the horizontal direction is 100%,
while estimation for block sizes of 16, 32, and 64 fails for PSNR
above 41.1 dB, 39.5 dB, and 38.6 dB, respectively. Furthermore,
estimation accuracy is also data dependent, because high-frequency
regions in an image can mask block artifacts. For example, Fig-
ure 5 shows slightly worse block size estimation for Goldhill than
for Lena, because Goldhill has stronger high-frequency components.
Nevertheless, estimation is still accurate at high PSNRs where the
artifacts are not perceptually visible.

Furthermore, this scheme is robust under the presence of edges
in the image, due to the examination of the signal c, as shown in
Eqn. 5. In Baboon for the vertical direction, without examining c to
find the edges, the scheme fails due to a spurious edge in the last row
of the image, which is most likely an artifact of image acquisition.
When we do take into account c, our scheme will ignore this spuri-
ous edge, and as a result we obtain a decent estimation accuracy as
shown in Figure 6.

We also plot the receiver operating characteristic (ROC) curve to
illustrate our detection accuracy as a function of the OSNR threshold
in Figure 7 which shows PD versus PF for the test in Eq. 14. This
plot uses detection results from 24 digital images of natural pho-
tographs with varying frequency characteristics, all with size 512-
by-512. We test for the same block sizes and quality factors men-
tioned previously. We see that our scheme can obtain a PD of 95.0%
for a PF of 7.4%, and a PD of 98.0% for a PF of 16.5%. In prac-
tice, we can decrease our OSNR threshold to accommodate a higher
PD . The cost of a miss (i.e., detecting no block artifacts when in fact
block processing is present) can be significant in a forensic setting
where subsequent forensic tests depend on some block size estimate.
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Fig. 7. ROC curve as a function of the OSNR threshold computed
from 24 natural photographs.

5. CONCLUSION

We have proposed a block size estimation scheme for use in non-
intrusive forensic analysis. Unlike existing block measurement meth-
ods, this scheme makes no assumption on the block size or the nature
of prior image compression or processing. We reduce our gradient
magnitude image to a one-dimensional signal d. Using the fact that
gradient magnitudes are greater along block boundaries, we employ
median filtering to extract the peaks from d. The block size is then
estimated from the extracted signal dp using a maximum-likelihood
approach. We also propose the use of the observed signal-to-noise
ratio (OSNR) as a measure of our detection accuracy. Our scheme
works well in high PSNR and for various block sizes (possibly rect-
angular), and applying a threshold upon the OSNR can accurately
detect the presence of block artifacts.

Ultimately, this scheme fits into a broader system for image
forensics, particularly one which can identify source coding schemes
and parameters. Nevertheless, block size estimation remains a cru-
cial first step in non-intrusive forensic analysis for digital images and
video. The necessity of our scheme arises from the fact that, without
proper estimation of block processing parameters, subsequent tests
on block-processed data would be rendered meaningless.
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