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ABSTRACT
Recently graph-cut optimization has been extensively ex-

plored for interactive image segmentation. In this paper we

propose Discriminative Gaussian Mixtures (DGMs) to boost

the performance of graph-cut-based segmentation. Given the

user specified pixels, our algorithm analyzes their distribu-

tions in color, texture and spatial spaces and produces op-

timized Gaussian mixtures to set the data cost in the image

graph, under the criteria of maximizing the discriminant power.

We also show how to assemble novel training data to train

DGMs for the link cost in the graph. Experimental results

demonstrate that DGMs can noticeably improve the perfor-

mance of graph-cut segmentation on texture-rich images.

Index Terms— Image segmentation, Interactive systems

1. INTRODUCTION

As shown in Figure 1, in the interactive segmentation sce-

nario, the user first roughly specifies a few foreground and

background pixels using scribbles, then invoke automatic pro-

cedures to generate the final fine mask for the foreground.

Using graph-cut-based optimization for interactive image

segmentation was first introduced in [1], where segmentation

was achieved by minimizing a “Gibb” energy

E(L, θ, z) = U(L, θ, z) + V (L, z), (1)

where z = (z1, ..., zn) are pixels in the image, L are binary

labels(foreground or background) for pixels and θ are param-

eters of models describing the distributions of the foreground

and background in the chosen feature space. U(L, θ, z) is the

data cost which evaluates the fit of labels L to pixels z, given

the statistical models θ. V (L, z) is the link cost which penal-

izes discontinuities of labels in locally smooth regions. The

total energy can be minimized by solving a graph-cut problem

with very efficient algorithms.

Recently many approaches have been proposed to improve

the original graph-cut-based approach for better performance,

such as the GMMRF method [2], the GrabCut system [3],

the LazySnapping system [4] and the multilevel banded ap-

proach [5]. Surprisingly, these approaches mainly focus on

parameter estimation and energy minimization in Equation 1,

and leave the problem of feature and model selection to their

Fig. 1. Top: original image with user input. Left: Segmenta-

tion by graph-cut using traditional GMMs. Right: Segmenta-

tion by graph-cut using DGMs proposed in this paper.

simplest solutions. For instance, [3] used Gaussian Mixture

Models(GMMs) in RGB space with 5 components for both

foreground and background; [4] used K-means with 64 com-

ponents in RGB space; and [1] and [5] used single 1D Gaus-

sian in the histogram of grayscale pixel values. Also, these

approaches trained their models separately on foreground and

background samples and paid no attention to the discriminant

power of these models.

On the other hand, applying clustering algorithms, es-

pecially GMMs in multiple feature spaces has been exten-

sively studied for traditional non-interactive image segmen-

tation. Permuter et al. [6] studied GMMs in color and texture

spaces for image retrieval. Chen et al. [7] used K-means in

color and texture spaces for unsupervised image segmenta-

tion. In [8] GMMs were trained with spatial constraints un-

der a modified expectation-maximization(EM) framework for

segmentation. Although these approaches were successful,

optimizing GMMs for interactive segmentation has not been

studied.

This paper aims at optimizing GMMs for graph-cut based

interactive image segmentation. Specifically, we maximize

the discriminative power of GMMs so that the optimization

result of graph-cut can lead to more satisfying segmentation.

The Discriminant Guassian Mixtures we propose here employ

a modified EM framework to achieve automatic feature selec-

tion, mixture number selection and parameter estimation, un-

der the criteria of maximizing the discriminant power of the

models.
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Fig. 2. Left: A synthetic example. Right: projecting feature

vectors of pixels into a 2D space.

2. DISCRIMINANT GAUSSIAN MIXTURES

2.1. Formulations

Given the fact that any single feature may not be sufficient

to segment the foreground in difficult images such as the one

shown in Figure 1, for a pixel z we extract features from color,

texture and spatial spaces, denoted as xc
z , xt

z and xs
z , respec-

tively. xc
z is the color of z in Luv color space, and xs

z is the

(x, y) coordinate of z. The texture descriptor xt
z is an 8 di-

mensional vector computed from 38 filter banks by using the

the rotationally invariant, multi-scale, Maximum Response

MR8 filter bank [9], which has been proven to be efficient

for texture classification tests [10]. The final feature vector

xz = [xc
z, x

s
z, x

t
z] has a dimension of 13.

User specified foreground and background pixels are used

to train a positive and a negative GMM. Our GMM is defined

as

f(x; θ) =
K∑

k=1

pkg(x; mk, σk, wk) (2)

where g() is a modified multi-dimensional Gaussian function

by introducing a new parameter vector wk. Specifically, wk =
[wc

k, ws
k, wt

z] is a three dimensional vector consisting of three

weights for each of the feature subspace. By assuming the

three feature subspaces are orthogonal so that the covariance

matrices σk = diag{σc
k, σs

k, σt
k} and the mean vectors mk =

[mc
k,ms

k,mt
k], the modified Gaussian can be written as

g(x; mk, σk, wk) = C · exp
{
−1

2
[wc

k ·Md(xc,mc
k, σc

k)+

ws
k ·Md(xs,ms

k, σs
k) + wt

k ·Md(xt,mt
k, σt

k)
]}

(3)

where Md(x, m, σ) is the Manhattan distance from a vector x
to a Gaussian G(m,σ), and C is a constant for normalization.

The underlying idea for introducing wk into the gaussian

mixture is to allow the model to automatically choose the best

combination of features which can maximize its discriminant

power. A synthetic example is shown in Figure 2 for better

demonstration of the idea. In this example the foreground ob-

ject contains two distinct regions Fa and Fb while the back-

ground B is a solid texture region. Clearly Fa and Fb will

form two modes (ga and gb) for the foreground GMM, and the

background will have a single mode gc in the feature space,

as shown in Figure 2b. Since Fb and B have almost the same

texture, considering texture feature in gb will do no good to

but only harm the classification performance. Thus we should

set wt
b ≈ 0 and wc

b ≈ 1 (spatial features are ignored in this

example). Similarly, we should set wt
a ≈ 1 and wc

a ≈ 0
so that pixels in region Fa can be better separated from the

background by using only texture information. This dynamic

weight setting enables the whole mixture model to give better

classification performance.

Mathematically, the weights for different feature spaces

can be calculated by applying a Linear Discriminant Analysis

(LDA) between a pair of foreground and background modes.

As shown in Figure 2b, applying LDA between ga and gc

will result in a linear classifier AC which guarantees maximal

separability between ga and gc. The weights, wc
a and wt

a, are

the parameters of this linear classifier.

2.2. Parameter Estimation

Introducing weights wk into Eqn. 3 brings discriminant power

into Gaussian mixtures, however it complicates the parameter

estimation procedure. In the traditional EM framework, fore-

ground and background GMMs are trained separately to only

minimize the fitting error of the models to the correspond-

ing samples. In our formulation, we estimate the parameters

for positive and negative Gaussian mixtures jointly to mini-

mize the fitting errors as well as maximize the separability.

To achieve this we propose a modified EM algorithm as de-

scribed as follows.

• Initialization: We apply K-Means to foreground and

background samples separately to form initial modes

for two Gaussian mixtures and calculate the means and

covariance matrices of Gaussians. For each Gaussian

the weights wc, ws and wt are set equally to be 1/3.

• Repeat the following EM steps until convergence:

– E-step: Calculate the membership probabilities of

each sample based on the modified Gaussian in

Equation (3).

– M-step 1: Calculate the mean and covariance ma-

trix of each Gaussian based on membership prob-

abilities of samples.

– M-step 2: For each Gaussian gf
k in the foreground

mixture, find the Gaussian gb
l in the background

mixture which has the closest distance to it. Ap-

ply LDA between gf
k and gb

l to calculate the weights

wc
k, ws

k and wt
k for gf

k .
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– M-step 3: Update the weights for each background

Gaussian using the same method.

• End.

2.3. Selecting Number of Modes

Setting the number of modes properly is another key issue to

the success of our segmentation algorithm. In general, too

few modes will result in large fitting errors, while too many

modes will lead to over-fitting. To automatically adjust the

number of modes to achieve the best possible segmentation

results, we define a foreground model performance descriptor

as

If =
∑Nb

n=1 fF (xb
n; θf )∑Nf

n=1 fF (xf
n; θf )

(4)

where xf
n,n = 1, ..., Nf are foreground pixel samples, and

xb
n,n = 1, ..., Nb are background ones. fF is the foreground

DGM we obtained from training. Essentially, If is defined

as the ratio of the fitting error of background samples to the

fitting error of foreground samples using the same foreground

model. Apparently, a small If value indicates a better dis-

criminant power of the foreground model.

We initially set Kf , the number of foreground modes to

be 1, and gradually increase it. In the meanwhile, we cal-

culate the corresponding If values. We stop at iteration t
when abs‖If (t + 1) − If (t)‖ < ε, where ε is a predefined

threshold, and choose current Kf value as the final number of

foreground modes. Similarly, we define a background model

performance descriptor and use it to choose the proper num-

ber for the background modes.

Figure 3 shows the Kf vs. If curve and Kb vs. Ib curve

for the image shown in Figure 1. Both curves have a waterfall

shape. For this example the proper numbers of foreground

and background modes are both chosen to be 6.

Fig. 3. Kf vs. If and Kb vs. Ib curve.

Fig. 4. Edge patch templates.

Fig. 5. (a-b): foreground probabilities computed from tradi-

tional GMMs and DGMs. (c-d): foreground boundary proba-

bilities computed from a static function and DGM.

3. DGM FOR GRAPH-CUT

We use the Discriminant Gaussian Mixture we described above

to set both the data cost and the link cost in the image graph,

and use graph-cut to compute a final segmentation.

3.1. Setting Data Cost

Using DGMs for setting data cost is straightforward. Given

the user specified foreground and background pixels, we train

a foreground and background mixture fF and fB , and use

them to set a data cost for a new pixel z as

U(Lz, z) =

⎧⎨
⎩

fF (xz,θf )
fF (xz,θf )+fB(xz,θb)

: Lz = 0
fB(xz,θb)

fF (xz,θf )+fB(xz,θb)
: Lz = 1

(5)

For user marked pixels the data cost is set to be infinite as in

previous approaches.

3.2. Setting Link Cost

The link cost encourages graph-cut to cut through the fore-

ground edges. In previous approaches [1, 3, 4] this term is

set to be a static exponential function under the assumption

that large gradients in the image correspond to the foreground

edges. This is true when the image is smooth, however for

highly textured images strong gradients are all over the image

thus cannot be used to identify the foreground boundary.

We use the proposed DGMs to train a foreground edge

model to better identify the foreground boundary. Suppose we
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Fig. 6. Two more segmentation results. Images with green borders are segmented by traditional graph-cut based segmentation

approach.

obtain some foreground edge pixels as positive samples, and

some pixels inside the foreground and background as negative

samples, we can train an On-the-Edge DGM fe and an Off-

the-Edge DGM fne, using the same method as we train fF

and fB . Thus for a pair of neighboring pixels z and v, the

link cost between them is set to be

V (z, v) =

⎧⎨
⎩

fe(xz,xv)

fe(xz,xv)+fne(xz,xv)
: Lz = Lv

fne(xz,xv)

fe(xz,xv)+fne(xz,xv)
: Lz �= Lv

(6)

where fe/ne(xz, xv) = fe/ne(xz)+fe/ne(xv)
2 .

The only problem left is that in the interactive segmenta-

tion scenario the user only marks some pixels inside the fore-

ground and background, thus we only have negative samples

to train the model fne. For the model fe, we instead gener-

ate some synthetic foreground edge patches as training sam-

ples. As shown in Figure 4, we create eight 7× 7 edge patch

templates to model the smooth transitions from foreground

(white) to background (black) in eight directions. The val-

ues in each patched are normalized between 0 and 1. given a

pair of foreground and background patches, we can generate a

synthetic edge patch by linearly combining these two patches

using one of the edge templates. These synthetic edge patch

are then used to fit the On-the-Edge model fe.

4. RESULTS

In figure 1 we show DGMs significantly outperforms tradi-

tional GMMs for segmenting a very difficult image. Figure

5 visualizes the corresponding data and link costs computed

from previous approaches and the proposed DGMs. It shows

that DGMs can identify foreground pixels and edges much

more accurately.

Two more segmentation results are shown in Figure 6.

These results demonstrate that even the foreground and back-

ground contain similar textures and colors, our algorithm can

still generate good results given the discriminant power em-

bedded in the underlying statistical models.
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