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ABSTRACT

In this paper we propose a new method for image noise
reduction based on wavelet transform. In this method we
introduce an improved version of thresholding neural
networks (TNN) by utilizing a new class of smooth
nonlinear thresholding functions as the activation function.
Using this approach we will find the best thresholds in the
sense of minimum mean square error (MMSE). Then using
TNN with obtained thresholds, we employ a cycle-spinning-
based technique to reduce image artifacts. Experimental
results indicate that the proposed method outperforms
several other established wavelet denoising techniques, in
terms of Peak-Signal-to-Noise-Ratio (PSNR) and visual
quality.
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1. INTRODUCTION

Noise reduction is one of the most common and important
preprocessing steps in many image and video systems. The
corruption of images by noise is common during its
acquisition or transmission. Thus the aim of denoising is to
remove the noise while keeping the important image
features such as edges as much as possible.

Recently, a vast amount of papers in the literature has
been published on image denoising using wavelet based
nonlinear techniques [1-14]. Donoho and Johnstone [1-2]
introduced a new method, known as wavelet shrinkage,
which consists of transforming the noisy image into an
orthogonal domain by 2-D discrete wavelet transform. The
wavelet coefficients smaller than a given amplitude are
suppressed (soft or hard thresholding). The 2-D inverse
discrete wavelet transform is performed to get the denoised
image. This approach can significantly reduce noise, due to
the excellent localization property of wavelet transforms
which concentrates signal energy on a few number of
wavelet coefficients. However, this method exhibits visual
artifacts and oscillations in the vicinity of discontinuities,
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called pseudo-Gibbs phenomena. Therefore, many variants
of the wavelet shrinkage techniques were developed.

One of the methods to find the optimum threshold
values is by a method called Thresholding Neural Network
(TNN), introduced by Zhang [3-5]. In this method, wavelet
coefficients of the corrupted signal are applied to TNN to
perform thresholding by using a class of smooth nonlinear
functions. In this method, thresholds are adaptively adjusted
for a given nonlinear function.

To reduce the pseudo-Gibbs artifacts, another improved
method has been proposed by Coifman and Donoho [6],
known as cycle spinning. This method consists of applying
the thresholding process to translated versions of the
original image and averaging. As the wavelet transform is
not translation invariant, this approach will result in
different estimates of the original image with statistically
different noises, which will be reduced by averaging.

In this paper, we propose a two step denoising scheme
based on these two methods, TNN and cycle spinning. Also
a new class of smooth nonlinear functions is developed as
the activation function for TNN. In the first step thresholds
are adaptively adjusted for the given nonlinear function.
Then cycle spinning algorithm, with TNN as its
thresholding parameter, will be used to improve the visual
quality and reduce artifacts. Experimental results indicate
that the proposed method outperforms TNN, cycle spinning
and several other established wavelet denoising techniques,
in terms of PSNR and visual quality.

2. WAVELET DENOISING THECHNIQUES
2.1. Thresholding Neural Network (TNN)

Zhang introduced TNN to find the optimum threshold
values in the transform domain to achieve noise reduction
[3-5]. The neural network structure of the TNN is shown in
Fig. 1. The input of the TNN is noisy samples, y; = x; + n,
where x is the true signal and » is additive noise. The
transform shown in Fig. 1 is an orthogonal wavelet
transform. Here the thresholding function 7(x,z) is employed
as nonlinear activation functions of the neural network.
Zhang suggested a class of activation functions as follows.
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Fig. 1. Zhang's thresholding neural networks (TNN) [3].
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This function is the smooth version of the soft-
thresholding function which is an entire function for 4 >0.
In TNN algorithm a neural network based scheme is used to
obtain the estimate v, of the true image DWT coefficients

v;, which minimize the MSE risk.
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where u; and v; denote the data stream of the 2-D DWT
coefficients of the input noisy image y and the true image x,
respectively. Also, #; is the threshold used for the i ” wavelet
coefficient, which will be adjusted by TNN to minimize the
risk J(?). Since we do not have information about the
original image x and cannot utilize its DWT coefficients v;
as reference to estimate the risk J(z), Zhang has suggested a
practical approach to this problem. His suggestion is to use
another noisy image y' as the reference. This image is
obtained from the same true image x plus the noise term »’
that is uncorrelated to n. This is a reasonable assumption,
since in some applications we may have an array of sensors
and obtain more than one corrupted version of the signal [3].
Zhang proved that using such noisy reference signal leads to
the same optimum threshold as using the true signal [4].
Also if we have not any available reference signal, it is
possible to use TNN. Zhang suggested using Stein'’s
Unbiased Risk Estimate (SURE) as an estimator of the MSE
[5]

In TNN, gradient-based LMS stochastic adaptive
learning algorithm is used to obtain the optimum thresholds.
To do so, in the j * iteration, the threshold parameter ¢ at

position i is adjusted by #/*' =/ — At/ where
s
At =af —L&f 3)
ot
where o/ is a learning parameter, &/ =7V —v/ is the

instantaneous error for i " wavelet coefficient and V',

denotes the data stream of the 2-D DWT coefficients of the

reference image y' . Thus the optimum thresholds which
minimize the risk J(?) is obtained and can be used to denoise
the image.

2.2. Cycle Spinning

The basic thresholding functions of Donoho [1-2] exhibits
visual artifacts and oscillations in the vicinity of signal
discontinuities, called pseudo-Gibbs phenomena. Therefore,
Coifman and Donoho [6] proposed an improvement to basic
wavelet thresholding called cycle spinning. This method
utilizes the shift variant property of wavelet transform. In
this algorithm by using different shifts of the noisy image,
we can compute different estimates of the unknown signal,
and then linearly average these estimates. As the wavelet
transform is not translation invariant, this approach will
result in different estimates of the original image with
statistically different noises, which is reduced by averaging.

If we denote the 2-D circular shift by S;;, the wavelet
transform by W, and the threshold operator by 7, the cycle
spinning will be performed as :

A 1 ki ky 4
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where k; and k, are the maximum number of shifts which
would cause an improvement in denoising. The maximum
numbers of effective shifts will be equal to the number of
decomposition levels used for wavelet transform [7]. This
approach reduces the image artifacts.

3. PROPOSED METHOD

Now we will describe the proposed method. In this method,
first we use an improved version of thresholding neural
network (TNN) with a new class of smooth nonlinear
thresholding functions as the activation function. After this
process we use the optimum thresholds obtained from the
TNN for the thresholding step of cycle spinning.

Zhang [3] used the smooth version of the soft-
thresholding function as the activation function in TNN.
Also we know that basic hard-thresholding could excellently
preserve the detailed characteristics of the image edges,
while producing more artifacts than soft-thresholding. On
the other hand, soft-thresholding yields a smoother image,
but it can create distortion along the image edges [8].
Considering this fact, we present a new type of smooth
differentiable hard-thresholding, which can keep the good
properties of the standard hard-thresholding, i.e.,

Bl
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Fig. 2 shows this function for various values of b. As
we see this function is the smooth version of the basic hard-
thresholding and estimates two segments of hard-

thresholding with two exponential functions. The parameter
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Fig. 2. Proposed thresholding function 77, (x, )

b determines the degree of the thresholding effect. Also
parameters a and c is determined such that the continuity of
the thresholding function and its derivative is preserved at
the threshold value ¢. For its similarity to hard-thresholding
function, it preserves the edges.

The DWT of an image consists of four frequency
bands: HH, HL, LH and LL, where “H” represents high pass
filter and “L” represents low pass filter. We use four
separate TNNs for these subbands. These TNN’s are trained
based on the algorithm shown in (3). This method will lead
us to the optimum threshold values.

Finally, we use cycle spinning to improve the resulted
image from the TNN step. In the thresholding step of cycle
spinning we use our proposed thresholding function (5) with
the optimum derived thresholds. This approach will reduce
the artifacts appeared by thresholding.

4. EXPERIMENTAL RESULTS

In this section we perform several experiments to test the
proposed algorithm and compare it with other image
denoising techniques. In the first experiment we compare
our method with the TNN method proposed by Zhang [3].
To do so, the 256x 256 Cameraman image is used as a test
image. The original image is shown in Fig. 3(a). In this
experiment, we employed the MATLAB® sym4 wavelet
filter with four levels of decomposition to implement the
orthogonal DWT. We use our thresholding function 7, (x,t)

with b=0.1 throughout this work. The PSNR results, for
different noise levels, are shown in Table 1. This table
confirms that our proposed algorithm outperforms Zhang's
method. To compare the visual quality of these two
methods, the result of denoising for a noisy image with
PSNR=20db is shown in Fig. 3. As we see, our method
gives better visual result besides the PSNR improvement.

In the second experiment we compare the proposed
method with several well-known denoising methods. These
methods include: VisuShrink[2], MATLAB®’s spatially
adaptive image filtering algorithm Wiener2, Donoho’s
SureShrink of soft-thresholding [9], Chang's BayesShrink

Noisy Zhang's TNN Proposed Method
20 26.64 27.28
25 29.97 30.77
30 33.73 33.99

Table 1. Comparison between the PSNRs (dB) resulted from
Zhang's TNN method and our method for denoising 'cameramen’'.

N A B I\ T
(c) Zhang's TNN (PSNR=26.6)

(d) Our method (PSNR=27.28db)

Fig. 3. Comparison of the proposed method
with Zhang's TNN method [3].

[10], Hou's improved Wiener-Chop algorithm that utilizes
the Wiener filtering of wavelet coefficients [11], Mihcak's
method [12], Chen's NeighShrink thresholding [13],
Bharath's complex steerable wavelet construction method
[14]. The PSNR results of these denoising methods are
shown in Table 2. For this experiment, we use 512x512
Lena image. As we see our methods outperforms all these
established denoising approaches.

In the third experiment we compare the proposed
method with another cycle-spinning based method [7] which
uses basic hard-thresholding for the operator 7' and two
different transforms, wavelet and contourlet. Fig. 4
compares our method with this cycle-spinning based
method. As we see, our method is better both subjectively
and objectively (PSNR).

5. CONCLUSION

In this paper, we proposed a new efficient wavelet-based
image denoising method based on improved thresholding
neural network (TNN) and cycle spinning methods. We
presented a new class of thresholding functions as an
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Noise Level =10 | ¢,=15| ¢,=20 | 5,=25 | ,=30
VisuShrink [1] 31.37 | 29.58 | 28.51 | 27.74 | 27.19
Wiener?2 33.44 | 30.77 | 28.87 | 27.20 | 25.98
SureShrink[9] | 3374 | - 3033 | - |2859
BayesShrink [10] | 33.65 - 30.41 - 28.67
Improved
WienerChop [11] 34.35 - 30.85 - 28.96
Mihcak [12] 34.39 | 30.44 | 28.52 | 26.95 -
NeighShrink [13] | 33.69 | 31.68 | 30.10 | 28.90 | 27.98
Complex
steerable [14] 32.81 - 31.07 - 29.69
Our Method 34.89 | 33.87 | 32.48 | 31.43 | 30.49

Table 2. Comparison of PSNRs (dB) for different denoising
methods using Lena image with different noise levels.

(c) Wavelet+Cyclespinning
(PSNR=28.87db)

(d) Contourlet+Cyclespinning
(PSNR=29.39db)

(e) Our method (PSNR=30.05db)

Fig. 4. Comparison of the proposed method
with a cycle-spinning based method [7].

activation function of TNNs, which utilizes good properties
of hard-thresholding such as edge preserving. Also we
applied cycle-spinning as a post-processing filter to reduce

image artifacts. Experimental results clearly showed the
capability of the proposed method in image denoising and
its superiority to several other established wavelet denoising
techniques, in terms of PSNR and visual quality. For future
work we will consider new thresholding functions and other
transforms such as contourlet transform.
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