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ABSTRACT

A novel approach to joint estimation of multiplicative noise vari-
ance and probability of impulsive noise occurrence in images is
proposed. It uses a fractal Brownian motion model for description
of real life images. It is demonstrated that this approach provides
accurate estimation of mixed noise parameters even for images
containing a large percentage of texture regions. The proposed
method performance is compared to a modification of a recently
designed method based on minimal inter-quantile distances.

Index Terms— Noise, Fractals, Parameter Estimation, Image
Analysis, Image Restoration

1. INTRODUCTION

Airborne and satellite remote sensing (RS) complexes nowadays
provide a lot of information useful for various applications [1]. But
in practical situations different kinds of noise and distortions cor-
rupt this information at stages of image forming and transmission.
This leads to decreasing the reliability of RS data interpreting.

Knowing of noise and distortion type and characteristics allows
selecting an appropriate image processing method. However, noise
parameters are often unknown in advance. Moreover, they can vary
in different image forming conditions. Thus, preliminary image
analysis with the purpose of noise/distortion type and parameter
determination is one of commonly used operations. To reduce the
influence of subjective factors and to decrease RS images process-
ing time, it is desirable to apply automatic estimation methods [2].

The methods described in [2] and [3] allow discriminating sev-
eral complex noise/distortion situations. One among them typical
for radar imaging [1] is a situation when an image is corrupted by
mixed (multiplicative and impulsive) noise. Thus, below we con-
sider the problem of joint estimation of parameters of such type of
noise.

Note that there are quite many existing approaches to estima-
tion of multiplicative and additive noise variance [4-6]. They are
based on analysis and robust processing of a set of local variance
estimates computed in scanning windows (SW). A general goal

was to provide applicability and appropriate accuracy of designed
techniques for textural images.

However, the performance of these techniques quickly re-
duces if impulse noise is present in analyzed images and its prob-
ability is rather large [7]. Keep in mind that for many applications
(especially, for image filtering [7]) it is strongly desirable to a pri-
ori know or to estimate the probability of impulsive noise ( impP ).
Then it becomes necessary to design methods able to simultane-
ously estimate noise variance and impP . In available literature, we

have not found any method dealing with blind estimation of impP .
The only analog is the method proposed in our recent paper [8]
that deals with blind estimation of mixed (additive and impulsive)
noise parameters.

Thus, below we extend the approach [8] based on maximum
likelihood estimation to the case of mixed multiplica-
tive+impulsive noise. Moreover, to take into account the properties
of real life RS images, we imply fractal Brownian motion (fBm)
model that has become popular for describing many natural phe-
nomena [9, 10].

2. OBSERVATION MODEL

Let us present an image as an im imm n×  matrix denoted as x . Let
( , )x t s  denotes an element of matrix x  with coordinates ( , )t s

also called image pixel. For image description we propose to use a
fBm model. By definition [10], fBm is a Gaussian process ,
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where ⋅  denotes ensemble expectation, 2
xσ  - is the variance of

increment of fBm process on unit distance. To take into considera-
tion heterogeneous structure of RS images we assume that fBm
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parameters depend on spatial coordinates but in such a manner that
within a small image fragment they can be treated as constant.

Image is supposed to be corrupted by a mixture of multiplicative
and impulsive noise with unknown parameters. The observation
model has the following form

( , ) ( , ) ( , )y t s x t s t sμ= ⋅ η ;     ( )2( , ) 1,t s Nμ
μη → σ , (2)

imp imp( , ) ( , ) (1- ( , )) ( , ) ( , )iz t s y t s b t s n t s b t s= ⋅ + ⋅ , (3)

imp imp( ( , ) 1)P b t s P= = ,   imp imp( ( , ) 0) 1-P b t s P= = , (4)

where im im=1, 2,.., , =1, 2,.., t m s n , x  is the noise-free image,
y  denotes the image corrupted by multiplicative noise, z  is the
image corrupted by mixed multiplicative with (relative) variance

2
μσ  and impulsive noise, μ�  denotes the matrix with normally

distributed elements, impb  is the binary random field (if

imp ( , ) 1b t s = , then the pixel is corrupted by impulse, and other-

wise), ( , )in t s - denotes random variables uniformly distributed in
the range [ ],a b . Pixel values of μ� , impb  and ( , )in t s  are sup-
posed to be spatially uncorrelated.

The problem is to estimate 2
μσ  and the probability impP  based

on the observed field z  and taking into account aforementioned
assumptions on statistical properties of noise-free image and noise.

3. ESTIMATION OF MIXED NOISE PARAMETERS

A general block diagram of the proposed approach (Fig 1) is prac-
tically the same as that one described in our earlier papers
 [8, 12]. At initialization step, preliminary impulse noise detection
is performed using Abreu’s method [11]. This algorithm has been
chosen because of its simplicity and acceptable performance qual-
ity. As the result, a preliminary estimate impb̂  of the matrix impb  is
obtained. Then, in further derivations we employ only those pixels
that are not corrupted by detected impulses, i.e., the pixels with

imp
ˆ ( , ) 0b t s = . The algorithm also needs initial values of mixed

noise parameters. A good choice is to set them 2ˆ 0.01μσ =  and

imp
ˆ 5%P = .

At the first stage, fBm parameters’ estimation in the SW is
performed [13]. At the second stage, impulse noise filtering based
on fBm parameters estimations and initial assumptions is carried
out. The pixel values corrupted by impulses are predicted based on
“uncorrupted” pixels within the SW [13]. At the third stage, more
accurate detection of impulses is done with producing an improved
estimate impb̂ . The detection algorithm is the following

2 2
pr 0

imp
0

ˆ1,    ( , ) ( ( , ) ( , )) / > ,ˆ ( , )
0,    ( , ) ,

z xT t s z t s x t s T
b t s

T t s T
−= − σ

=
≤

(5)

where        2 2 2 2 2
pr pr prˆ ˆ ˆ( ( , ) ) ( , ) ( , )z x x t s t s t sμ μσ σ σ σ σ− = ⋅ + + ⋅

( ) ( )2
0 imp imp

ˆ ˆ2 ln ( ) (1 ) / ln 2 z xT b a P P −= ⋅ − ⋅ − − π ⋅ σ ,
2ˆ μσ  is the estimation of 2

μσ  formed at previous iteration, prˆ ( , )x t s

is the central pixel value maximum likelihood prediction based on
“uncorrupted” pixels within the SW, 2

pr ( , )t sσ  is the variance of

prˆ ( , )x t s . prˆ ( , )x t s  and 2
pr ( , )t sσ  are derived at the second stage

according to algorithms given in [13].
Principle of impulse detector operation relies on assumption

that for “uncorrupted” pixels a random value prˆ( , ) ( , )z t s x t s−  pos-

sesses Gaussian distribution 2(0, )z xN −σ  (then ( , )T t s  possesses
2χ  distribution with one degree of freedom). Strictly saying, it

slightly differs from Gaussian but our studies have shown that this
can be neglected. One advantage of the proposed detector that
differs it from many known heuristic detectors [11] is an offered
opportunity to determine false alarm rate faP . This particular prop-
erty allows estimating impP .

Iterations stop when impulse noise detection results at previous
and current iterations are identical (convergence condition). The
first three stages are described in detail in [12] and [13]; here we
concentrate on considering the fourth stage of 2

μσ  and impP  esti-
mation. For simplicity, for all variables the indices corresponding
to the iteration number are omitted.

For each pixel ( , )t s , consider an 1N ×Y  sample Y  composed
of “uncorrupted” pixels within N N×  SW. Let X  denote the
corresponding sample from the matrix x . The true value of the
central SW pixel is denoted as 0x . An example of the sample Y
forming ( 3N = ) is shown in Fig. 2 (the corrupted pixels are
shown by black dots).

According to the chosen model of noise-free image, let us de-
scribe the sample X  as fBm-field with original coordinates in the
SW center (that now corresponds to the point (0,0)) and with in-
tensity bias equal to 0x . Thus, 0x= Δ +X X  where ΔX  is the
unbiased fBm. Each SW position is characterized by a vector of
parameters ( )0( , ), ( , ),x t s H t s x= σ

�
. Omitting a constant that does

not depend on � , the likelihood function (LF) of Y  is

( ) ( )1
0 0

1ln ( ; ) log(| |)
2

TL x x−
Δ Δ= − − − +Y YY � Y 1 R Y 1 R ,

where      ( )2 2
0( , ) ( , ) ,   k=l,

( , )
( , ),   k ,

R k l R k l x
R k l

R k l l
Δ Δ μ

Δ

Δ

+ + ⋅ σ
=

≠
X X

Y

X

,  1...k l N= Y , I  is the Y YN N×  identity matrix, ΔXR  is correla-
tion matrix of the vector ΔX  where ΔXR  is obtained according to
(1). The score function grad ln ( ; )L=

�
Y � , the Fisher information

matrix T= ⋅F
� �

 and the maximum likelihood estimate �̂  of �
are derived at the first stage [13].

To estimate 2
μσ , we propose to use v  different SWs placed

uniformly on the image. The aggregate sample ΣY  consists of a set
of samples ,  1..i i v=Y , where each sample iY  consists of pixels
for the i-th SW position. Aggregate vector of estimated parameters
of size ( )3 1 1v⋅ + ×  has the form

T
1 1 01 2 2 02 0( , , , , ,  ,..., , ,  , )x x xv v vH x H x H xΣ μ= σ σ σ σ� .

The logarithmic LF for ΣY  is of the form

1
ln ( ; ) ln ( ; )

v

i i
i

L LΣ Σ Σ
=

=Y � Y � .

Expressions for all elements of grad ln ( ; )LΣ Σ Σ=
�

Y �  are de-
rived at the first stage except of
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Algorithm  initialization:  preliminary  impulse  noise  detection

      Mult iplicative and 
impulsive noise parameters 

estimation: impP̂ , 2ˆμσ . 

    fBm parameters estimation  in
scanning window  based  on

uncorrupted  pixels.

    Maximum likelihood image filtering
based on fBm parameters estimations and

assumptions on image and noise properties

     Impulse noise
detection. Bayesian

approach

Is
convergence

condition
 reached?

End
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No
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Fig. 1. Flow-chart of image corrupted by mixed noise filtering algorithm Fig. 2 Example of sample Y  forming
The Fisher information matrix for ΣY  is expressed as

1 1
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where iF  is the Fisher information matrix for sample iY ,
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The estimation variance Cramer-Rao lower bound is

( )2 1

1
1/

v
T
i i i

i

E −
σ

=

σ = − ⋅ ⋅B F B . (7)

Vector Σ�  is estimated according to iterative algorithm
1 1

ˆ ˆ
ˆ ˆ | |n n

n n

Σ Σ Σ Σ

+ −
Σ Σ Σ Σ= =

= + ⋅� � � �� � F
�

. (8)

ˆˆ (3 1)μ Σσ = ⋅ ν +
�

.
Initial approximation for the fBm parameters which are the part

of 0ˆ
Σ�  is found at the first stage, the initial approximation for the

variance is the estimation formed on previous iteration.
The estimate impP̂  has the form

im im im im

imp im im im im
1 1 1 1

ˆ ( , ) / ( , )
m n m n

t s t s

P b t s m n k t s m nα
= = = =

= − α − α , (9)

where     2
prˆ( , ) ( ) (min(x ( , ) , b)z xk t s b a t s Tα −= − − + ⋅ σ +

                                                        2
prˆmax(x ( , ) , a)z xt s Tα −+ − ⋅ σ ,

matrix αb  is computed according to (5) but with such threshold

Tα  that provides faP  equal to α  (this can be done by taking into

account statistics of ( , )T t s ). The variance of impP̂

( )
im im im im

2
2

im im
1 1 1 1

1 / ( , )
m n m n

P b b
t s t s

p p k t s m n
= = = =

σ = − − α , (10)

where imp imp( , ) (1 )bp P k t s P= ⋅ + − ⋅ α .

4. EXPERIMENTAL RESULTS

Quantitatively the estimates 2ˆ μσ  are characterized by their bias

( )2 2 2ˆ100% /μ μ μΔ = ⋅ σ − σ σ  and variance 2
σσ . The comparison has

been performed to the recently proposed technique [6]. Since
originally the method [6] has been proposed for additive noise
variance estimation, one modification was introduced. Now origi-
nal local estimates of 2

μσ  are obtained as local estimates of vari-
ance divided by local squared means. The results of estimation for
the standard test images are presented in Table 1. For fBm-
algorithm ( 7N = , 1000v = ) both experimental (exp) and theo-
retical (theor) values of 2

σσ  are given.
The analysis shows that for both methods the estimates are bi-

ased. This bias depends upon the test image and 2
μσ . However, for

the fBm based algorithm, Δ  and 2
σσ  are significantly smaller than

for the interquantile method (IQM) [6]. In comparison to IQM, the
fBm-algorithm allows to reduce Δ  by  5-26% and simultaneously
to reduce 2

σσ  by 2.5…4 times.

The experimental and theoretical values of 2
σσ  for the proposed

method coincide well enough to predict the method accuracy. This
allows using theoretical variances 2

σσ  to characterize estimation
algorithm quality avoiding intensive computations for estimating
experimental variances. For 5300v =  (maximal number of non-
overlapping SWs) the variance 2

σσ  is reduced by almost 6 times.

Quantitative results for joint estimation of 2
μσ  and impP  ( 0a = ,

255b = , 7N = , 400v = ) are presented in Table 2. In our ex-
periments, we set 20.25Tα = . The analysis of these data demon-

strates that the estimates of impP̂  are very close to the true values.
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Experimental and theoretically predicted values of 2
Pσ  and 2

σσ
coincide well again. This allows pre-estimating (forecasting) the
method accuracy from a given noisy image under interest.

One item is worth noting. The values 2
σσ  and 2

Pσ  are only the
rough estimates of Cramer-Rao lower bound because of assump-
tions used in algorithm design as well as due to differences of real
image and noise properties from the models used.

When impP  increases, the efficiency of IQM reduces. The esti-

mates 2ˆ μσ  become biased; the variance of 2ˆ μσ  significantly in-

creases. Thus, the IQM is practically inoperative when impP =10%.

In contrast to this method, for fBm-algorithm the bias and variance
of estimate of 2ˆ μσ  slightly depend upon impP .

CONCLUSIONS

A novel method for joint estimation of multiplicative noise vari-
ance and probability of impulse noise occurrence has been de-
signed. It possesses the following advantages: 1) applicability to
textured images, 2) appropriate accuracy of obtained estimates of
mixed noise parameters, 3) possibility to predict the method accu-
racy for processed noisy images.

Table 1. Experimental results of multiplicative noise variance estimation
2
μσ =0 2

μσ =0.0025 2
μσ =0.01

Algorithm 2ˆ μσ 2
σσ (exp/theor) Δ % 2

σσ (exp/theor) Δ % 2
σσ (exp/theor)

IQM 0.00022 ---- 19.18 (3.78/---) 910−⋅ 7.48 (4.20/---) 810−⋅Standard test image
“Barbara” fBm 6.04 510−⋅ -/8.14 1210−⋅ 8.28 (1.50/1.13) 910−⋅ 2.47 (1.42/1.17) 810−⋅

IQM 0.0002 ---- 13.26 (2.45/---) 910−⋅ 4.57 (3.12/---) 810−⋅Standard test image
“Lena” fBm 8.38 510−⋅ -/4.60 1210−⋅ 4.55 (5.64/6.97) 1010−⋅ -0.86 (7.78/7.78) 910−⋅

IQM 0.00105 ---- 54.21 (1.25/---) 810−⋅ 21.16 (1.11/---) 710−⋅Standard test image
“Baboon” fBm 1.02 410−⋅ -/2.67 1010−⋅ 27.24 (3.60/3.03) 910−⋅ 16.30 (3.62/2.19) 810−⋅

Table 2. Joint estimation of 2
μσ  and impP  (“Baboon”, 2

μσ =0.01)

impP impP , Pσ ,%
(exp/theor)

Δ %
2
σσ 810⋅

(exp/theor)
fBm 0%

imp imp
ˆ 0P P= = 6.08 6.95/3.79

fBm 0% 0.04% 0.028/0.032 6.51 4.35/4.06
IQM 0% --- --- 10.87 33.0/----
fBm 5% 5.14% 0.28/0.36 9.42 6.50/4.38
IQM 5% --- --- 20.23 80.0/----
fBm 10% 9.90% 0.44/0.50 6.56 7.08/4.40
IQM 10% --- --- 202.42 19100/--
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