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ABSTRACT

A novel method for robust super-resolution of face images is
proposed in this paper. Face super-resolution is a particular
interest in video surveillance where face images have
typically very low-resolution quality and there is a need to
apply face enhancement or super-resolution algorithms. In
this paper, we apply a manifold learning method which has
hardly been used for super-resolution. A manifold is a
natural generalization of a Euclidean space to a locally
Euclidean space. Manifold learning algorithms are more
powerful than other pattern recognition methods which
analyze a Euclidean space because they can reveal the
underlying nonlinear distribution of the face space; however,
there are some practical problems which prevent these
algorithms from being applied to super-resolution. Almost
all of the manifold learning methods cannot generate
mapping functions for new test images which are absent
from a training set. Another factor is that super-resolution
seeks to recover a high-dimensional image from a lower-
dimensional one while manifold learning methods perform
the exact opposite as they are applied to dimensionality
reduction. In this paper, we break the limitation of applying
manifold learning methods for face super-resolution by
proposing a novel method using Locality Preserving
Projections (LPP).

Index Terms— super-resolution, face image analysis,
locality preserving projections, manifold learning methods

1. INTRODUCTION

The face super-resolution task is to recover a high-resolution
face image from a given low-resolution face image (e.g.
captured from surveillance footage) by modeling the face
image space. In video surveillance, it is often the case that
the resolution of a captured facial image is not sufficient for
face recognition even by a human being, so we need to
recover higher-resolution images by super-resolution
techniques. Baker et al. [1][2] developed a face
hallucination method using a Bayesian formulation. This
approach infers the high frequency components from a
parent structure with the assistance of training samples.
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Rather than using the whole or parts of a face, the super-
resolution is established based on training images (pixel by
pixel) using Gaussian, Laplacian and feature pyramids.

A different model proposed by Liu et al. [3] describes a
two-step approach integrating a global parametric model and
a local nonparametric model. In the first step, the
relationship between the high-resolution face images and
their smoothed, down-sampled lower resolution ones is
learned. In the second step, the residual between an original
high-resolution image and a reconstructed one is re-
compensated. Also, Wang et al. [4] developed an efficient
face hallucination algorithm using an eigentransformation
algorithm.

However, all these methods have not utilized the
neighborhood relationship in the distribution of face images.
Facial images change appearance due to multiple factors
such as pose variations, lighting acquisition conditions and
facial expressions. Previous work cited in literature has not
paid attention to this distribution and has dealt with all the
diverse images equally. Inspired by realizing the limitation
of previous work, we propose a novel manifold learning
approach using Locality Preserving Projections (LPP) for
producing better super-resolution images.

In the previous work of face image analysis using
manifold learning methods, it has been shown that face
images lie on a manifold [5][6][7][8]. Also, it has been
demonstrated that the variation of a certain facial factor such
as pose or expression makes a sub-manifold in the manifold
structure [6][9]. Thus, it is expected that manifold learning
methods can improve the tasks demanding face image
analysis, such as face recognition, super-resolution, or face
synthesis. Based on this idea, Chang et al. developed [10]
the Neighbor Embedding algorithm for super-resolution of
general images. They assume that the local distribution
structure in sample space is preserved in the down-sampling
process, and apply one of the manifold learning methods,
Locally Linear Embedding (LLE) [5].

However, two problems mainly prevent manifold
analysis from applying to face super-resolution. First of all,
most of the manifold learning methods such as LLE do not
clearly define mapping functions for new test images which
are absent from a training set. So, if we still want to use
those methods for super-resolution, we define the way to
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generate mapping functions for unseen test images [10].
Moreover, super-resolution is to recover a high-dimensional
image from a low-dimensional one whereas manifold
learning methods are more suited for dimensionality
reduction. In this paper, we propose a new method for face
super-resolution, breaking the current limitation which
hinders using manifold learning methods for super-
resolution. We apply LPP [6] in this paper since it has an
advantage over LLE and other manifold learning methods;
LPP has a well-defined mapping for new test points.
Additionally, we show that we can employ a MAP estimator
to infer the LPP coefficients of a high-resolution image from
a low-resolution image. Finally, in this paper, we break the
two main obstacles to applying manifold analysis to face
super-resolution.

In section 2, we introduce the concept of manifolds and
LPP briefly, and in section 3, we explain the proposed
super-resolution method for face images. In section 4, we
demonstrate that the proposed method yields better results
than other baseline algorithms for super-resolution. Section
5 summarizes the conclusions and discussions of the
proposed method.

2. MODELING THE MANIFOLD STRUCTURE IN
FACE IMAGE SPACE

PCA and LDA effectively see only the Euclidean structure;
they fail to discover the underlying structure when the data
lie on a nonlinear manifold. So, we need to detect and
analyze the manifold structure underlying in the distribution
of image samples. The analysis of manifolds reveals the
characters of the distribution and can be applied to
dimensionality reduction. Thus, to discover the nonlinear
structure of manifolds, manifold learning techniques have
been proposed.

2.1. Manifold Learning Methods
Embedding
In many real-world classification problems, the local
manifold structure is more important than the global
Euclidean structure. Thus, manifold learning techniques
often use adjacency to preserve the local manifold structure.
By manifold learning techniques, neighboring points should
still be close after mapping, and the points far from each
other should still be far from each other in the new mapping.
LPP is to find a linear projective mapping for
dimensionality reduction. Compared to LPP, other manifold
learning techniques such as Isomap [7], LLE [5], or
Laplacian Eigenmap [8] define the mapping only on the
training data. They successfully show the training data are
distributed along manifolds, but it is unclear how to evaluate
the maps for new test samples. On the other hand, by LPP,
we attain the well-defined transformation matrix which is
applicable to new test images absent from the training set.

Using Neighbor

Algorithm 1. The Algorithm of LPP

1. Constructing the adjacency graph: Let G denote a
graph with m nodes. One node (or a training image)
has K nearest neighbors in the meaning of Euclidean
distance, and the neighbors are connected by edges.

2.Choosing the weights between neighbors: the weight
between any two neighbors can be calculated by
Gaussian kernel of the Euclidean distance. In this
paper, binary kernel is used in this paper; wy is set up
as 1 if the two images x; and x; are connected by an
edge, and otherwise wy; is set up as 0.

3. Eigenmaps: Compute the eigenvectors and eigenvalues
for the generalized eigenvector problem:

XLX"a=1XDX"a 1)
where D is a diagonal matrix whose diagonal entries
are D;=) Wy, and L=D-W. Now, the projective matrix
A has the eigenvectors a; as column vectors.

2.2. Locality Preserving Projections
LPP is designed for optimally preserving the neighborhood
structure of the data set while Principal Component Analysis
(PCA) utilizes only a global basis. LPP is a novel method
for dimensionality reduction by using both the local
structure and the global basis of the data set. LPP aims to
find a linear projection for dimensionality reduction such
that the local structure of the data space is preserved. LPP
utilizes the weight, which represents how close any two data
points are in the data space. Using a set of these weights, we
can extract a set of eigenvectors which represent both the
global basis and the neighbor embedding in the data set.
When the high-dimensional data lies on a low-
dimensional manifold embedded in data space, the locality
preserving projections are obtained by finding the optimal
linear approximations to the eigenfunctions of the Laplace
Beltrami operator on the manifold. The algorithm of LPP is
shown in Algorithm 1 [6].

3. FACE SUPER-RESOLUTION USING LPP

In this paper, we introduce super-resolution of facial images
using a novel manifold method, Locality Preserving
Projections (LPP). The goal of manifold methods is
modeling the distribution of a set of data using both local
and global structures. LPP is one of the novel manifold
methods. Manifold methods have been used for image
representation and recognition rather than super-resolution.
Among the manifold methods, only LLE has been used for
super-resolution problems. In this paper, we show LPP can
be applied to super-resolution. LPP is better than other
manifold methods, such as LLE, which define the mapping
only on the training data.
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3.1. Patch-based Modeling

Saul and Roweis [11] shows that local areas such as the
mouths in face images also can be analyzed by manifold
learning methods. Based on the idea, in this paper, we divide
one image into multiple patches and perform super-
resolution for each patch. Patch-based approaches for super-
resolution using small image patches are less dependent on
person-identity than global super-resolution approaches
using a whole image.

In this paper, we select 24x24 pixel patches which
overlap both horizontally and vertically with each other by
two pixels, and remaining pixels compose one small patch.
The size of patches and overlaps were empirically concluded
optimal according to experimental results. To integrate all
the patches, all the pixel values at the same position are
added, and divided by the number of overlaps to normalize
intensity. The reason why patches are overlapped is to
remove strong difference of intensity at the boundary of two
patches. If the overlapping area shrinks, effects of
undesirable local distortions spread to neighboring patches.

3.2. Estimating the LPP Coefficients of High-Resolution
For every patch, its own LPP model is constructed to
compute the mapping between a high-resolution patch Xj
and a down-sampled patch X;. Given a high-resolution
patch, the corresponding low-resolution patch is computed
by down-sampling:

X, =BX, 2
where B is the transformation matrix for the mapping from
high-resolution to low-resolution.

LPP aims to find a low dimensional embedding from a
high dimensional patch, so it is proper to be used for
dimensionality reduction. LPP has been applied to
dimension reduction by projecting a high dimensional vector
onto a low dimensional subspace. On the contrary, in this
paper, we show LPP can be also applied to super-resolution
problem; which is to map a low-resolution patch onto a
high- resolution patch subspace.

However, in the case of super-resolution, we must attain
the coefficients in the high-resolution space from a given
low-resolution patch. To do this estimation, various
probability approaches such as Markov network or Belief
Propagation have been employed to infer the coefficients of
a high-resolution patch from a low-resolution patch
[31[12]13].

We employ a Maximum a posterior (MAP) estimator to
find the LPP coefficients of a high-resolution patch. A MAP
method has been used to estimate the PCA coefficients of a
high-resolution patch from a low-resolution one [3][13].

Given the patches taken from training images, {X},” }L ,

the LPP coefficients Y, are calculated by
Y, =A"X,, X, =AY, (3)
where A is the projective matrix of LPP in eq.(3).

(a) Original 96x128  (b) Input 24x32 (c) Cubic-B spline

(d) Baker et al.

(e) Chang et al. (f) Our method

Figure 1. Comparison between our method and others

Maximizing p(X X )p(Xy) in eq. (3) is equivalent
to maximizing (X, 1Y,)p(¥,) - The prior p(¥,,) is
modeled by Gaussian distribution function:

PYs) = exp(-Y, AY,): 4)

where A = diag(c?,--,6%) and Z is a normalization constant.
The likelihood (4) is denoted by

XL 1Y) = ep({BAY, - X, [ /2) O

To minimize p(x LY )P, the optimal Yy is selected
such that it satisfies the following objective:
Y, =argmin 2¥," 'Y, +|BAY, - x| (6)

Finally, the optimal solution is given by

Y,=(A"B"BA+N"')"'A"B"X, (7
where /A is decided empirically. If 4 is too small, X cannot be
obtained because A’B"BA is close to singular.

4. EXPERIMENTAL RESULTS

For experiments, a subset of the color FERET database [14]
was used. We selected the images with neutral expression
and frontal pose, and used 1500 images for training and 500
images for testing. Before experiments, the face images were
aligned with given eye coordinates, cropped to 96x128 pixel
images, and normalized by intensity. The high-resolution
images were down-sampled to a low-resolution 24x36 pixel
images. We choose /=1000, and K=100.

The proposed method is compared to three baseline
methods in Figure 1: cubic B-spline, face hallucination
proposed by Baker et al. [1], and super resolution for

I-575



(a) 16X16 (b) 2424 (c) 96128
Figure 2. The effect of the size of a patch when K is 100.

(a) K=10

(b) K=100 (c) K=1000

Figure 3. The effect of the number of nearest neighborhoods
when the size of a patch is 24x24.

general images proposed by Chang et al. [10]. Cubic B-
spline is one of baseline methods of super-resolution, and
the other two methods are state of the art. For implementing
the algorithm in [10], LLE code obtained from [16] is used.
Figure 1.(e) shows the proposed method recovers high-
frequency and details more than the other methods.

Figure 2 shows that the size of a patch is important for
getting reliable results. When a patch is too small, it loses
the geometrical information of a human face, so the super-
resolution reconstruction image becomes blurry as we can
see in Figure 2.(a). On the other hand, as a patch becomes
larger, it needs much more training images to extract reliable
generalized basis. In particular, when a new test image is
totally different from the training image, (for example, a new
person absent from the training set is given in the test image)
a large patch cannot generalize to reconstruct it. Figure 2.(c)
shows the result when one image is used as one patch; it is
significantly noisy. Thus, it is necessary to find the optimal
patch size empirically.

The number of nearest neighbors for each patch also has
significant impact on the super-resolution results. Figure 3
shows the manifold structure cannot be analyzed as K
becomes too small or large. When X is too large, we cannot
analyze neighborhood embedding while too small K makes it
impossible to analyze the global structure in data space.

5. CONCLUSION
In this paper we proposed a novel approach for robust super-
resolution by employing Locality Preserving Projections
(LPP), one of the newest manifold learning algorithms. LPP
is typically employed for dimensionality reduction

applications that are mainly used to represent an image using
a local structure as well as the global basis of an image set.
However, we show in this paper that LPP can be
successfully applied to super-resolution problem and
provide superior reconstruction results. Manifold learning
techniques are powerful tools that can analyze the adjacency
relationship by preserving the local manifold structure. In
particular, LPP calculates the basis of the training image by
giving bigger weights to neighboring images such as those
captured from similar lighting conditions. According to our
experiments, we demonstrate that the proposed method
produces reliable results and work well with untrained face
data. The proposed method produces more robust visual
reconstruction results with more facial details than other
baseline methods. Future work will include examining the
face recognition performance.
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