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ABSTRACT

The super-resolution reconstruction (SRR) of images is an ill posed
problem. Traditionally it is treated as a regularized minimization
problem. Moreover, one of the major problems concerning SRR is
its dependence on an accurate registration. In this work we show that
a certain amount of registration error may, in fact, be bene cial for
the performance of the Least Mean Square SRR (LMS-SRR) adap-
tive algorithm. In these cases, the regularization term can be avoided
and computational cost is reduced, an important advantage in real-
time SRR applications.

Index Terms— Image reconstruction, image registration, LMS,
adaptive estimation

1. INTRODUCTION

An approach to improve digital image quality which has attracted
large interest in the last decade uses super-resolution reconstruction
(SRR). SRR consists basically of combining multiple low-resolution
(LR) images of the same scene or object to form a higher resolution
image. This problem is traditionally formulated as a minimization
problem. However, SRR frequently leads to ill-posed inverse prob-
lems because of ill-conditioned blur operators or insuf cient number
of LR images. For this reason, a regularization term is usually con-
sidered in the minimization problem [1, 2, 3].

The Least Mean Square (LMS-SRR) algorithm proposed in [3]
to solve the SRR problem is an interesting solution for real-time ap-
plications, such as SRR of video sequences, due to the simplicity
of the stochastic gradient approximation. The results in [3] show a
performance improvement when LMS is regularized (leading to the
R-LMS algorithm).

One of the major issues regarding SRR algorithms is their de-
pendence on an accurate registration. Registration errors have al-
ways been regarded as detrimental to the SRR performance, and
several works have proposed algorithms that are robust to the ef-
fects of such errors [2, 4, 5]. This robustness usually comes at the
cost of an increase in computational complexity. More recently, a
new algorithm has been proposed which is robust to registration and
admits a fast implementation for global translational image motions
[6]. However, even under these conditions its computational cost and
memory requirements are not competitive with [3]. Finally, we have
veri ed in our experiments that moderate levels of registration er-
ror in the LMS-SRR may improve the algorithm’s performance and
render regularization unnecessary.

In this work we present a study of the equivalence between the
effects of registration errors and regularization in the performance of
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the LMS-SRR algorithm. We show that when only one iteration of
the LMS-SRR is performed by time sample, moderate levels of reg-
istration errors may improve the algorithm performance. In this case,
the registration error acts like a regularization, and thus the regular-
ization term can be avoided, saving computational resources. More
information on the design of the LMS-SRR using different number
of iterations by time sample can be found in [7]. Our analysis con-
siders the occurrence of whole-image translational movement only.
This is the simplest case to handle and is representative of several
practical applications [6, 8].

In Section 2, we brie y review the LMS-SRR algorithm and its
regularized version [3]. In Section 3, we present the algorithm anal-
ysis and study the in uence of both the registration errors and the
regularization term on the image estimation error. In Section 4 we
present simulation results which corroborate the conclusions reached
in Section 3. Finally, in Section 5 we conclude this work.

2. THE LMS-SRR ALGORITHM

Hereafter, bold lowercase letters denote column vectors and bold up-
percase letters denote matrices. The variable t is integer and indexes
discrete-time samples of images and operators. We refer to the ob-
served (low-resolution) images as LR images, and to both the orig-
inal (desired) and the reconstructed high-resolution images as HR
images.

2.1. The signal models

Given the N ×N matrix representation of an LR (observed) digital
image Y(t) and an M × M (M > N ) matrix representation of
the original HR digital image X(t), the acquisition process can be
modelled as [1]

y(t) = D(t)x(t) + e(t) , (1)
where vectors y(t) (N2×1) and x(t) (M2×1) are the lexicographic
representations of the degraded and original images, respectively,
at the discrete time instant t. The N2 × M2 matrix D(t) models
the degradation due to sub-sampling and blurring, and is assumed
known. TheN2 × 1 vector e(t)models the observation (electronic)
noise, which is assumed stationary in space and time, statistically
independent of y(t) and x(t), white, Gaussian, with zero mean and
with space autocorrelation matrix Re = E{e(t)eT(t)} = σ2

eI. σ2
e

is assumed to be determined from camera tests [9].
The dynamics of the input signal is modelled by

x(t) = G(t)x(t− 1) + s(t) , (2)

where G(t) is the warp matrix that describes the relative displace-
ment from x(t − 1) to x(t). Vector s(t) models the innovations
in x(t), and thus includes the contributions of outliers to the recon-
structed image.
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2.2. The LMS-SRR Adaptive Algorithm

The LMS-SRR algorithm attempts to minimize the mean-square er-
ror (MSE) E{‖ε(t)‖2} [3], where ε(t) = y(t) − D(t)x̂(t), x̂(t)
is the estimate of x(t) and E{·} denotes statistical expectation. The
cost function is de ned as JMS(t) = E{‖ε(t)‖2 | x̂(t)}. The steep-
est descent update of x̂(t) is in the negative direction of the gradient

∇JMS(t) =
∂JMS(t)

∂x̂(t)
= −2DT(t){E[y(t)]−D(t)x̂(t)} (3)

and thus x̂k+1(t) = x̂k(t)− (μ/2)∇JMS(t). Notice that the perfor-
mance surface JMS(t) is de ned for a speci c time instant t.

The LMS-SRR algorithm is the stochastic version of the steepest
descent algorithm. Using the instantaneous estimate of (3) yields

x̂k+1(t) = x̂k(t) + μDT(t)[y(t)−D(t)x̂k(t)] , (4)

which is the LMS-SRR update equation for a xed t and k = 1,
. . . , K. The time update of (4) is based on the signal dynamics (2),
and performed by x̂0(t + 1) = G(t + 1)x̂K(t). Using the latter ex-
pression in (4), solving for a time recursion in x̂K(t), and dropping
the subscriptK for simplicity, we have the LMS-SRR recursion [8]

x̂(t) = AK(t)G(t)x̂(t− 1) + μ
K−1∑

n=0

An(t)DT(t)y(t) , (5)

whereA(t) = [I− μDT(t)D(t)].

2.3. The LMS-SRR algorithm considering registration errors

Registration errors can be modelled by a change inG(t) as [2]

Ĝ(t) = G(t) + ΔG(t) , (6)

where Ĝ(t) is the estimated warp matrix, andΔG(t) is the registra-
tion error matrix. Thus, considering estimation errors, the LMS-SSR
algorithm becomes

x̂(t) = AK(t)Ĝ(t)x̂(t− 1) + μ
K−1∑

n=0

An(t)DT(t)y(t) . (7)

2.4. The regularized LMS-SRR algorithm

The regularized LMS-SRR (R-LMS-SRR) algorithm is proposed in
[3] and can be derived from the cost function

JMSR(t) = E{‖εr(t)‖2 | x̂(t)} , (8)

where

εr(t) = ‖y −D(t)x̂(t)‖2 + λ‖Sx̂(t)‖2 , (9)

and S is a high-pass lter.
Following the same steps as in Section 2.2 we obtain the R-

LMS-SRR recursion, which forΔG(t) = 0 is given by

x̂(t) = [A(t) + λSTS]KG(t)x̂(t− 1)

+ μ

K−1∑

n=0

[A(t) + λSTS]nDT(t)y(t) . (10)

3. THE ANALYSIS

In this section we present a study comparing the LMS-SRR algo-
rithm with registrations errors with the R-LMS-SRR without regis-
tration errors (ΔG(t) = 0). The study is based on the second order
moment of the HR image estimation error v(t) = x̂(t)− x(t).

An analytical model for the stochastic behavior of the LMS-SRR
with registration errors has been presented in [8, 10]. This model
includes a recursion for the second order moment of the estimation
error v(t). Considering K = 1 in (7), the recursion is given by

KLMS(t) = A(t)G(t)KLMS(t− 1)GT(t)A(t)

+ A(t)G(t)E[v(t− 1)x̂T(t− 1)] E[ΔGT(t)]A(t)

+ A(t)E[ΔG(t)]E[x̂(t− 1)vT(t− 1)]GT(t)A(t)

+ A(t)E[ΔG(t)x̂(t− 1)x̂T(t− 1)ΔGT(t)]A(t)

+ μ2DT(t)Re(t)D(t) , (11)

whereKLMS(t) = E[v(t)vT(t)] for the LMS-SRR algorithm.
Following the same steps and statistical assumptions similar to

those used in [8], we can derive the following recursion forKR-LMS(t)
of the R-LMS-SRR algorithm (10):

KR-LMS(t) = A(t)G(t)KR-LMS(t− 1)GT(t)A(t)

+ λA(t)G(t)E[v(t− 1)x̂T(t− 1)]GT(t)STS

+ λSTSG(t) E[x̂(t− 1)vT(t− 1)]GT(t)A(t)

+ λ2STSG(t) E[x̂(t− 1)x̂T(t− 1)]GT(t)STS

+ μ2DT(t)Re(t)D(t) . (12)

As it will be discussed, STS, A(t) and ΔG(t) can be inter-
preted as high-pass lters. Thus, lets start assuming that

λSTSG(t) � A(t)ΔG(t) . (13)

When integer steps are assumed for the true motion G(t), we can
show that Ĝ(t) can be modelled by Ĝ(t) = G̃(t)G(t), where G̃(t)
adds the error to the motion modeled byG(t) [8]. In this case, (13)
becomes

λSTSG(t) � A(t)[G̃(t)− I]G(t) , (14)

and therefore we can assume

λSTS � A(t)[G̃(t)− I] . (15)

Moving the deterministic matrices STSG(t) inside the expecta-
tion brackets in (12) and using (15) in the resulting expression, it is
easy to show that (12) and (11) become identical for KR-LMS(0) =
KLMS(0).

To see that this similarity is reasonable, note that the main as-
sumption used comes from (15), which substituted in (12) leads to

λSTS � A(t){E[G̃(t)]− I} . (16)

In the l.h.s. of (16), S is a high-pass lter convolution ma-
trix. Now, both D(t) and DT(t)D(t) act as low-pass lters. Then,
A(t) = [I−μDT(t)D(t)] in the r.h.s. of (16) also acts as a high-pass
lter for proper values of μ (certainly for μ = 1). Finally, the warp
matrix G̃(t) performs a small displacement over a post-multiplied
vectorized image [8]. Thus, the effect of [G̃(t)−I] can also be inter-
preted as a high-pass ltering operation. These arguments show that
both sides of (16) perform qualitatively similar processing. Thus,
their effects on the behavior of both algorithms should be similar.

I ­ 570



Fig. 1 shows the magnitudes of the frequency responses of both
sides of (16). Fig. 1(a) is the response of the l.h.s. assuming a Lapla-
cian mask, μ = 6 and λ = 0.01. A(t) can not be implemented via
a simple convolution, since DT(t)D(t) includes a subsampling fol-
lowed by an interpolation. Thus, Fig. 1(b) shows an approximation
of the frequency response of the r.h.s of (16) for the same step-size
as in Fig. 1(a). E[G̃(t)] was estimated from 500 MC simulations.
For each realization, G̃(t) was generated from random vertical and
horizontal displacements modelled as WGN(0, 0.5). It is clear that
the lter responses are both high-pass as anticipated.

As an illustration of the conclusion above, Fig. 2(b) shows the
difference between the “house” image (Fig. 2(a)) and its shifted ver-
sion, considering a displacement of one pixel to the right. The result
is a vertical edge detection. Therefore, assuming the registration
error as WGN (see [8] for more details about the validity of this
assumption in practical situations), it is reasonable to expect the ma-
trix E[G̃(t)] to perform the edge detection in all directions. Fig. 2(c)
shows the mean difference image estimated from 100 Monte Carlo
(MC) simulations for vertical and horizontal displacements given by
a WGN(0, 0.5) random processes (Figs. 2(b) and (c) had their gray
levels inverted and their contrast enhanced for printing purposes).
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Fig. 1. Frequency response of the lter performed by: (a) λSTS; (b)
A(t){E[G̃(t)]− I} (approximated).

(a)

(b) (c)

Fig. 2. High-pass effect caused by registration errors: (a) original
“house” image; (b) difference between the “house” image and its
one-pixel shifted to the right version; (c) mean difference image con-
sidering 100 random displacements.

4. RESULTS

To illustrate the equivalence between the effects of registration er-
rors and regularization in the LMS-SRR algorithm, we devised two
simulation examples. Both simulations are for whole image transla-
tional movements generated from unit step increments in both verti-
cal and horizontal directions (diagonal camera motion), in the HR
grid, at each time instant t. For the R-LMS-SRR algorithm, the
movement is assumed known (no registration errors). 128×128 HR
and 64 × 64 LR images were considered. The additive noise vector
e(t) was modelled as a WNG(0, 10) process. Neumann boundary
conditions were considered in the implementation of the warp ma-
trix, in the LMS-SRR algorithm. Registration algorithms from [11]
and from [12] were considered.

4.1. Example 1:

This example considers a typical situation where regularization is re-
quired. The step-size was μ = 6. D(t) modeled blurring through a
2 × 2 mean lter performed over an impulsive subsampling. Fig. 3
shows the spatial mean-square reconstruction errors tr(KR-LMS) for
the R-LMS-SRR algorithm for λ = 0.01 and λ = 0.05. Also
shown are the results for the LMS-SRR algorithm with known mo-
tion and using two different registration algorithms [11, 12]. Note
that R-LMS-SRR with λ = 0.01 leads to better performance than
LMS-SRRwith known motion. However, when LMS-SRR is imple-
mented using the registration algorithm from [11], which provides a
moderate level of registration error, it outperforms the known mo-
tion case and leads to results comparable to those obtained using
R-LMS-SRR. For larger registration error levels (obtained using the
registration algorithm from [12]), LMS-SRR leads to results similar
to those obtained using the over-smoothed (λ = 0.05) R-LMS-SRR.
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Fig. 3. Spacial mean square reconstruction error considering the R-
LMS-SRR and the LMS-SRR algorithms (parameters from Example
1).

4.2. Example 2:

This example presents a situation in which the result is over-smoothed
and a smooth restriction degrades the reconstructed image. The step-
size is μ = 7.8. D(t)models blurring as a Gaussian 6× 6 low-pass
ltering mask with variance 1.0, performed over an impulsive sub-
sampling. Fig. 4 shows the spatial mean-square reconstruction errors
for the R-LMS-SRR and LMS-SRR algorithms. Known motion case
and registration using the algorithm from [11] are considered. As the
result with known motion (no regularization) is already smooth, the
same regularization factor (λ = 0.01) that improved the result in the
Example 1 now over-smoothes the estimated image. Once again, the
results show that the effect of the registration errors is equivalent to
a regularization term.
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Fig. 4. Spacial mean square reconstruction error considering the R-
LMS-SRR and the LMS-SRR algorithms (parameters from Example
2).

5. CONCLUSIONS

This work presented a comparative study of the in uences of reg-
istration errors and regularization on the performance of the LMS
algorithm applied to super-resolution reconstruction. The main con-
clusions of this work are:

i) Contrary to what is traditionally assumed, a moderate level
of registration error may be bene cial for the performance of
the LMS-SRR algorithm (depending on the implementation);

ii) The occurrence of moderate registration errors, even in known
motion applications, can contribute for reducing computa-
tional complexity of the LMS-SRR algorithm by avoiding the
need for regularization.
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