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ABSTRACT

Any motion of the camera during the image integration time may de-
termine an image degradation known as motion blur. One approach
to prevent this degradation, namely multi-frame image stabilization,
consists of synthesizing a potentially motion blur free image by reg-
istering and fusing multiple short exposed image frames of the same
scene. In this paper we propose an approach to image fusion for
multi-frame image stabilization application. The proposed algorithm
is robust to various disturbing factors that may occur in practice like:
noise due to short frame exposures, blur in the individual frames,
errors in the registration of the individual frames, as well as the pres-
ence of moving objects in the scene. We demonstrate the algorithm
through a series of experiments and comparisons based on simulated
test images as well as on real images captured with digital cameras.

Index Terms— image stabilization, image fusion, image regis-
tration, total variation, exposure time.

1. INTRODUCTION

The problem addressed by image stabilization dates since the begin-
ning of photography, and it is basically caused by the fact that any
known image sensor needs to have the image projected on it during a
period of time called integration (exposure) time. Any motion of the
camera during this time causes a shift of the image projected on the
sensor resulting in a degradation of the nal image, called motion
blur.

The ongoing development and miniaturization of consumer de-
vices that have image acquisition capabilities increases the need for
robust and ef cient image stabilization solutions. The main driven
factors for this requirement include:

• The need for longer integration times in order to cope with
smaller pixel areas that result from sensor miniaturization and
resolution increase requirements.

• The need for longer integration times in order to acquire bet-
ter pictures in low light conditions.

• The dif culty to avoid unwanted motion during the integra-
tion time when using high zoom, and/or small hand-held de-
vices.

The existent image stabilization solutions can be divided in two
categories based on whether they are aiming to correct or to prevent
the motion blur degradation. In the rst category are those image
stabilization solutions that are aiming for restoring an image already
degraded by motion blur. If the point spread function (PSF) of the
motion blur is known then the original image can be restored, up
to some level of accuracy (determined by the lost spatial frequen-
cies), by applying an image deconvolution approach [1]. However,
the main dif culty is that in most practical situations the motion blur
PSF is not known being determined by the arbitrary motion of the
camera during the exposure time. The lack of knowledge about the

blur PSF suggests the use of blind deconvolution approaches in or-
der to restore the motion blurred images [2, 3]. Unfortunately, most
of these methods rely on rather simple motion models, e.g. linear
constant speed motion, such that their potential use in consumer
products is rather limited. Knowledge of the camera motion dur-
ing the exposure time could help in estimating the motion blur PSF
and eventually to restore the original image of the scene. Such an
approach have been introduced in [4], where the authors proposed
the use of an extra camera in order to acquire motion information
during the exposure time of the principal camera.

In order to cope with the unknown motion blur process, design-
ers have adopted solutions able to prevent such blur for happening
in the rst place. In this category are included all optical image sta-
bilization (OIS) solutions implemented nowadays by many camera
manufactures. These solutions are utilizing inertial senors (gyro-
scopes) in order to measure the camera motion, following then to
cancel the effect of this motion by moving either the image sensor,
or some optical element in the opposite direction.

A different method, based on specially designed high-speed im-
age sensors has been proposed in [5]. The method exploits the possi-
bility to independently control the exposure time of individual image
pixels in a CMOS sensor, and prevents motion blur by stopping the
integration time in those pixels where motion is detected.

Another approach to prevent the motion blur, known as multi-
frame image stabilization, consists of dividing a long exposure time
in shorter intervals by capturing multiple short exposed image frames
of the same scene. Due to their low exposure, the individual frames
are usually corrupted by noise (e.g. photon-shot noise, sensor noise)
[6], and less affected by motion blur. Using this approach the effect
of camera motion is transformed from a motion blur degradation
into a miss-alignment between several image frames. Consequently,
a long exposed and potentially motion blur free picture, can be syn-
thesized by registering and fusing the available short exposed image
frames. Suitable image registration approaches that are robust to
noise present in the short exposed image frames have been investi-
gated in our previous work [7]. The second operation of the stabi-
lization algorithm, namely image fusion, is aiming to combine the
information available in the short exposed image frames. In practice
this operation may be challenged by several factors like:

• Blur present in the individual image frames, which in spite of
their short exposure may still be affected by motion blur in
moments of fast camera motion.

• Occlusions caused by moving objects in the scene, whose po-
sitions are different in different image frames.

• Small errors in global image registration. These errors could
be caused by the presence of noise and blur in the individ-
ual frames, the presence of large moving objects, and/or by
limitations of the assumed motion model to represent certain
camera motions.

In this paper we take into consideration all these factors in order
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to design a robust image fusion algorithm for image stabilization ap-
plication. The proposed algorithm is presented in Section 2. Several
experimental results and comparisons are presented in Section 3. Fi-
nally, concluding remarks are presented in Section 4 of the paper.

2. THE PROPOSED IMAGE FUSION ALGORITHM

In the following development we assume that one of the image frames
was selected as reference, and the remaining frames have been glob-
ally registered with respect to it. The proposed algorithm synthesizes
the output image by improving the quality of the reference image
frame based on the information available in the remaining frames.

Let hk(x), for k ∈ {1, . . . ,K}, denoteK, short exposed, image
frames of the scene. Without any loss of generality we may assume
that h1 is the reference image frame.

Our model for the reference image frame is expressed by:

α1h1(x) = f(x) + n1(x), (1)

where α1 is a luminance scaling factor that accounts for lower lu-
minance of the observation due to its short exposure, x = (x, y)
denotes the coordinates of a pixel, f stands for the original image of
the scene, and n1 is a zero mean additive noise term.

In practice, we need to take into consideration: (i) possible er-
rors in global image registration between any observed image (hk)
and the reference image (h1), (ii) the presence of various occlusions
due to moving objects in the scene, and (iii) blur (e.g. motion blur)
present in the individual frames. These aspects are included in our
model for the remaining image frames which is expressed as follows

αkhk(x− dk(x)) = bk(x) [f(x) − fk(x)]

+ fk(x) + nk(x), (2)

where αk is the luminance scaling factor that accounts for shorter
exposure time of the frame, nk(x) is a zero mean additive noise
term, dk(x) = (dxk(x), d

y

k(x)) is a local displacement accounting
for possibly local errors in the global image registration, and fk(x) is
the noise free version of the k-th observed image frame. The image
fk may differ locally from f due to blur and/or occlusions caused
by moving objects. To model these distortions we introduced in
equation (2) a binary image bk that is one in those pixels x where
f(x) = fk(x), and zero otherwise.

The luminance scaling factors (αk) depend of the exposure times
of corresponding frames. Denoting by T the exposure time sought
for the nal image, and by tk the exposure time of the k-th image
frame, we can set αk = T/tk. However, if knowledge of the expo-
sure times are not available then the scaling factors can be estimated
based on the average luminance level in each observed image frame:

αk =
1

hk

KX
j=1

hj , (3)

where hk stands for the average gray level of the k-th observation.
In order to estimate the local corrective displacements dk(x) we

employ a block matching algorithm between hk and h1. This results
in an ef cient procedure for estimating the local corrective displace-
ments especially when employing fast block matching approaches
like three-step search, or logarithmic search [8].

In the following we simplify the notations, by denoting the lo-
cally corrected and luminance scaled frame k as:

gk(x) = αkhk(x− dk(x)), for any k ∈ {1, . . . ,K}, (4)

where d1(x) = 0.
The next step in our algorithm consists of estimating the binary

image masks bk. Due to zero mean additive noise assumption we
have that bk(x) = 1 in those pixels where the expectationE[gk(x)−
g1(x)] = 0. In practice, estimating the expectation by local spatial
averaging (e.g. on 3 × 3 windows) we have to employ a threshold
comparison in order to calculate the binary masks, i.e.

bk(x) =

(
1 if
˛̨̨
Ê[gk(x) − g1(x)]

˛̨̨
< τk,

0 otherwise
(5)

where Ê stands for the estimated expectation operator and the thresh-
old τk depends of the noise parameters. In this work we assumed
that all additive noise terms are white Gaussian noises of variances
σ2k, and we calculate the threshold values τk based on the standard
deviation of the difference image gk − g1, e.g. τk = 0.5

p
σ2k + σ2

1
.

At this point we need to formulate a rule for combining the infor-
mation available in the preprocessed image frames gk. In our work
we employ as fusion rule the maximum a posteriori (MAP) estimate
of the original image f given the frames gk. The posterior probabil-
ity density function (p.d.f.) of the image f given the preprocessed
observations gk can be expressed by:

p(f |g1, . . . , gK) =
p(g1|f) · · · p(gK |f)p(f)

p(g1, . . . , gK)
, (6)

where the images gk are assumed conditionally independent given f .
Retaining only the terms which depend on f , we can write an objec-
tive function to be minimized by the maximum a posteriori (MAP)
estimate:

Q(f) = −
KX
k=1

log p(gk|f) − log p(f). (7)

The k-th log-likelihood term can be calculated based on the ob-
servation model, as follows

− log p(gk|f) ∼

1

2σ2k

X
x∈Ω

|gk(x) − bk(x)f(x) − ak(x)fk(x)|
2 , (8)

where Ω is the image support, b1(x) = 1, and ak(x) = 1 − bk(x)
for any k ∈ {1, . . . ,K}.

As the prior term we adopt a discrete form of the Total Variation
(TV) prior

− log p(f) ∼ λ
X
x∈Ω

|∇f(x)| (9)

where∇ stands for spatial gradient operator, and λ is the prior weight
which balances our con dence between the prior and the observa-
tions.

Joining (8) and (9) we obtain the nal form of the objective func-
tion, whose gradient is given by

∇fQ =

KX
k=1

λk(x) [f(x) − gk(x)] + λ∇ [w(x)∇f(x)] , (10)

where λk(x) = bk(x)/σ
2

k, and w(x) = 1/|∇f(x)| is the diffu-
sive coef cient. In our work we minimize the objective function by
applying the conjugate gradient (CG) iteration and lagging the diffu-
sive coef cient one iteration behind. Convergence is relatively fast
due to CG properties such that in all our experiments we found suf -
cient to use 20 iterations. Also, experimenting on various images we
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concluded that a good choice for the prior weight λ is 0.04, which
we used in all our experiments.

Finally, we can summarize the proposed algorithm in the follow-
ing steps:

1. Estimate the luminance scaling factors αk and normalize the
luminance of the observed image frames.

2. Estimate local corrective displacements by employing a block
matching procedure between each frame and the reference
frame.

3. Estimate the binary image mask bk for each frame using (5).

4. Minimize the objective function (7) by applying CG method.

Some comments regarding the selection of the reference image
are in order. As reference frame we are aiming to select the frame
which is the least affected by blur (e.g. motion blur). One way to do
this is to force a shorter exposure time for the reference frame than
for the other image frames. Although this strategy emphasizes the
noise in the reference frame, it has the advantage to reduce the risk
of motion blur which is our primal concern in the reference frame
selection. Another way to select the reference image frame is to use
a sharpness measure, e.g. the average energy of the image in the
middle frequency band, that achieves higher values for the frames
which are less affected by blur.

3. EXPERIMENTS

A rst set of experiments has been conducted in order to evaluate
the proposed method in the presence of camera motion for different
number of frames. Let us denote by T the exposure time that would
be normally required in the given illumination conditions, i.e. in the
absence of motion a single image frame exposed T seconds would
be the one sought. However, in the presence of motion such long
exposed frame will be blurred, and hence in order to avoid motion
blur degradation we split the exposure time T between K image
frames. The individual exposure times of different frames are set as
follows

t1 = T/(2K − 1), and tk = 2t1, for any k ∈ {2, . . . ,K}, (11)

ensuring a smaller exposure time for the rst frame, i.e. reference
frame1 The noise level in every image frame is determined by the
exposure time of the frame. In our work we calculated the noise
level with the following formula

σ2k = (αtk + σ20)/t
2

k, (12)

which is in accordance to the SNR model of a typical image sensor
[6]. The values of the two constants of the model (12) used in our
simulations were α = 10−4, and σ0 = 6 × 10−4. In addition to the
above setup we also assumed that the camera is moving with a con-
stant speed of 20 pixels per time T , introducing thereby motion blur
in every frame in accordance to the frame exposure time. Finally,
in order to simulate the real case scenario we also introduced small
random registration errors in the image frames, in the range of ±5
pixels translations, and ±1 degree rotations.

The methods used for comparison in our simulations are as folows:

M1 Multi frame image restoration by weighted averaging the in-
dividual image frames, where the weights are inverse propor-
tional to the noise variance in each frame. It is important to

1This setup ensures also that the individual exposure times sum up to T ,
and the exposure times of all frames except the rst one are equal.
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Fig. 1. Performance of different methods: (a) in the ideal case when
there is no camera motion or blur in the individual frames, and (b) in
the real case when there is camera motion, motion blur in individual
frames and small image registration errors.

note here that this method represents the maximum likelihood
estimate of the original image from multiple observations af-
fected by white Gaussian noise.

M2 Single frame total variation image denoising applied onto the
reference image frame.

M3 Donoho’s hard threshold method in the wavelet domain [9],
applied onto the reference image frame.

The performance of different methods have been evaluated on
image ”Lena” using the experimental setup described above. Fig.
1 shows the PSNR achieved by different approaches when differ-
ent number of frames are used. In the ideal case, when no camera
motion is present and the frames are perfectly registered the best per-
formance are achieved by method M1, which is based on this restric-
tive assumptions (Fig. 1(a)). However, in the real case scenario the
method M1 has poor performance inferior even to the single frame
approaches used for comparison, as shown in Fig. 1(b). We note
that the proposed method is able to maintain the best performance
for different number of frames. On the other hand, the approaches
based on processing a single frame (i.e. the reference frame) are im-
proving in the rst phase as the number of frames increases due to
the reduction of motion blur degradation in the reference frame, but
then their performance diminishes as the noise level in the reference
frame is increasing.

The performance of different methods for a xed number of
frames (i.e. 5), and various levels of noise are shown in Tab. 1.
In this simulations the rst image frame, used as reference, was set
more noisy than the remaining four frames. Also, two of the frames
have been degraded by linear motion blur of length 11 pixels along
the directions 0 and 30 degrees respectively. In addition, small im-
age registration errors as described above have been also introduced.
A visual comparison of the results obtained by different methods is
shown in Fig. 2, where the normalized noise variance in the refer-
ence frame was 0.012.

Finally, in Fig. 3 we present two visual examples of image stabi-
lization algorithm applied on two sets of images captured with dig-
ital cameras. The results reveal the ability of the proposed fusion
approach to avoid including into the nal image the blur regions
present in some individual frames (Fig. 3 (b)), and to avoid multiple
copies of of a fast moving object (Fig. 3 (d)). The noise reduction
ability of the proposed method is better exempli ed in Fig. 4, that
shows a detail from the second example.
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(a) (b)

(c) (d)

Fig. 2. Visual comparison between different methods: (a) the refer-
ence frame, (b) method M1, (c) method M2, and (d) the proposed
method.

Image frame Normalized noise variance
Reference frame 0.002 0.006 0.012 0.020 0.030
All other frames 0.001 0.003 0.006 0.010 0.015

Proposed 31.60 29.56 28.31 27.39 26.66
M1 25.11 24.50 23.78 22.94 22.11
M2 29.74 27.80 26.51 25.54 24.65
M3 29.60 27.24 26.15 25.03 24.23
Reference Frame 26.56 22.07 19.20 17.08 15.44

Table 1. The performance achieved at different levels of noise in the
image frames.

4. CONCLUSIONS

We introduced a novel approach to image fusion for multi-frame
image stabilization. The proposed method takes into consideration
multiple aspects that may occur in practice like: heavy noise due to
short frame exposures, blur in the individual frames, errors in the
registration of the individual frames, as well as the presence of mov-
ing objects in the scene. The proposed method has been demon-
strated through a series of experiments and comparisons, reveling
good performance and high robustness to various disturbing factors
that may occur in practice.
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