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Abstract—This work considers a combination classi cation-
regression based framework with the proposal of using learned
kernels in modi ed support vector regression to provide superres-
olution. The usage of both generative and discriminative learning
techniques is examined rst by assuming a distribution for
image content for classi cation and then providing regression via
semi-de nite programming (SDP) and quadratically constrained
quadratic programming (QCQP) problems. The advantage of
the proposed method over other learning-based superresolution
algorithms include reduced problem complexity, speci city with
regard to image content, added degrees of freedom from the
nonlinear approach, and excellent generalization that a combined
methodology has over its individual counterparts.

Index Terms—superresolution, support vector regression, ker-
nel matrix, kernel learning, interpolation, resolution, scaling

I. INTRODUCTION
Single image superresolution is the ill-posed problem of de-

termining high-resolution image content given low-resolution
data. In determining the high-resolution image content, ad-
ditional or new information must be introduced aside from
the given low-resolution data. This information can come in
many forms, including but not limited to a set of shifted low-
resolution images of a single scene [1], assumed relationships
between existing pixel values and edges [2], a training set [3],
or any other data that would aid in enhancing visual acuity.
This work is concerned with maximizing the use of infor-

mation inherent in a training set. The rst step in utilizing the
training set would be to describe the domain. This can be done
through classi cation, in which content-based treatment offers
good generalization. There are currently several classi cation
based algorithms for superresolution, including [4], which
due to its structural soundness, provides the classi cation
framework for our classi cation-regression solution. [4] offers
a stochastically modeled MMSE ltering technique by using
localized choices for lters separated by Expectation Maxi-
mization (EM) under an assumption that a Gaussian mixture
accurately describes localized image distributions.
While an excellent approximation that is robust to errors,

linear interpolation in general has a tendency to average or
smooth out image content, often requiring a presharpening
step. In addition, with MMSE linear ltering, coef cients
are chosen to represent an entire class. Should unsupervised
clustering be insuf cient, there are no accommodations for
un-split classes and the errors carry over to observed results.
Therefore, as a regression step, the proposed method sub-
stitutes a modi ed support vector regression (SVR) for its
counterpart as a solution to these issues, thereby providing
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better function estimation and a good nonlinear approach. As
SVR relies heavily on its kernel, its choice signi cantly affects
the range and values of the regression and is optimized as well.
The remainder of this paper explores these issues. Support

vector regression is reviewed and the kernel problem is for-
mulated as a convex optimization problem in SDP and QCQP
forms in Sec. II as review from previous works, [5] and [6].
With the derived learning technique, Sec. III describes the
algorithm in its entirety including a brief overview of the
original resolution synthesis framework.

II. KERNEL LEARNING FOR SVR
The support vector machine (SVM), originally proposed in

[7], is a supervised learning technique that determines a high-
dimensional functional from a training set Ω,

Ω = {(x1, y1) , (x2, y2) , ..., (xN , yN )} . (1)

The goal of SVR is to use relationships learned through Ω, and
be able to generalize these relationships to unseen test points.
In (1), xi ∈ �n and yi ∈ �,∀i ∈ [1, N ], and SVR estimates
the function f : x→ y with the following optimization.

min
w,b,ξ

(
1
2
||w||2 + C

N∑
i=1

(
ξ+
i + ξ−i

))

subject to

(w · φ(xi) + b) − yi ≤ ε + ξ+
i

yi − (w · φ(xi) + b) ≤ ε + ξ−i

and
ξ−i , ξ+

i ≥ 0, ∀ i ∈ [1, N ] (2)

The high-dimensional mapping φ : X �→ F in (2) often better
suits a representation of complicated relationships which could
otherwise not be linearly realized. Within F , a kernel function
K(s, t) written as a kernel matrix K(·, ·) is de ned to be a
collection of dot products for an arbitrary φ that may or may
not be known. With this in mind, the dual to (2) can be found
and is written in (3).

max
α+,α−

−1
2

∑
i,j

{
(α+

i − α−
i )(α+

j − α−
j )K(xi,xj)

}
−ε

∑
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i ) +
∑

i

yi(α+
i − α−

i )

subject to∑
i

(α+
i − α−

i ) = 0 and 0 ≤ α
+/−
i ≤ C

with the solution hyperplane as

g(x) =
∑

i

(α+
i − α−

i )K(x, xi) + b (3)
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where a dot product in F is de ned by K(s, t) = φ(s) · φ(t),
the kernel function.
Using the kernel matrix K, computational complexity is

reduced because determining d = φ(s) · φ(t), which is
quite often intractable, is unnecessary when solving (3). This
de nition also allows φ to be unknown, in which case, K
can be conceptually chosen to be a desired similarity metric
depicting the “nearness” of two vectors. Thus, the selection
of the kernel matrix K becomes important and should be
sensitive to the training data.
Several works have explored the prospect of learning the

kernel matrix [8], [9], [6], [10],[11]. Of particular interest is
[8] in which a linear combination of smaller, known kernels
is optimized to produce a large kernel with good feature
representation for the classi cation problem. The analogous
optimization for regression has been explored in [9], although
errors lead the derivation to an incorrect outcome. These errors
have been addressed in a previous work [6], and the following
is the reformulation of a semi-de nite programming (SDP)
and quadratically constrained quadratic programming (QCQP)
problem to learn the kernel for regression in much the same
way that it has been derived for classi cation.
1) The SDP Problem: For simpli cation, let e be a vector

of all ones, and

α+ + α− = β+

α+ − α− = β− (4)

Then, after writing the Lagrangian and observing Slater’s con-
ditions, we take the dual of (3) and use the Schur complement
lemma as done in [6], and the optimal kernel can be found
with the following optimization problem.

min
K,t,λ,ν+

u ,ν−
l ,ν−

u

t

s.t.
(

2K γ
γT t − 2CeT (ν+

u + ν−
u )

)
	 0

ν+
u , ν−

u , ν−
l 	 0

εe + ν+
u + ν−

u − ν−
l 	 0

K 	 0
trace(K) = c (5)

If K is linear combination of xed kernels {ki}, then (5) is an
SDP, and we optimize with respect to the coef cients of the
linear combination. That is, when minimizing with respect to

K =
∑

i

μiki(·, ·) (6)

we are optimizing over possible values μi. This result is
general and can be applied to any problem.

2) The QCQP Problem: The QCQP arises from an added
constraint, μi ≥ 0, which loses some generality, though it
does ensure positive de niteness when inductively applying
the learned kernel. On the other hand, the complexity of the
kernel is never simpli ed because the positive eigenvalues of
each (μiki) will never reduce kernel rank.

The formulation we obtained is derived in the same manner
as [8], and is given in (7).

max
β+,β−,p

2yT β− − 2εeT β+ − cp

s.t. p ≥ β−kiβ
−

eT β− = 0
0 
 β+ + β− 
 2C

0 
 β+ − β− 
 2C (7)

Again, ki are the smaller positive semi-de nite kernels in (6)
for kernel construction. The μi values come out of the dual
Lagrangian variables.

III. KERNEL RESOLUTION SYNTHESIS
One solution for a localized approach to superresolution

uses the learned kernel in Sec. II for SVR to predict high-
resolution pixel values from low-resolution patches. That is, if
ILR and IHR are the low and high-resolution image patches
with sizes D×D and U ×U respectively, to superresolve the
center pixel of ILR by a factor of U , we de ne vectors

x = vectorize(ILR) − center pixel(ILR) ∈ �D2×1

y = vectorize(IHR) − center pixel(ILR) ∈ �U2×1 (8)

in a given training set Ω of xi feature and yi label pairs.
Although SVR has the capability to provide a general

regression of all possible image content with fairly clear results
due to its scalability properties, a single regressor for a large
training set introduces substantial computational complexity
as well as problem complexity. Depending on the data set,
the problem quickly becomes intractable in (5) and (7), when
the kernel constraint for each ki(·, ·) scales according to N2

where N is the number of training points. If K(·, ·) is a
sum of M small kernels, the order will exceed M · N2

without even considering other inequality constraints in (7).
Also, without further enhancements, the idea relies on the
heavy machinery of SVR to recognize all types of image
content, which increases the problem complexity due to the
large variety of x in X .
Our approach is to partition the problem into smaller

problems according to data similarity and hence more eas-
ily approximated ones. The remainder of this section is an
extension to this concept by using the resolution synthesis
framework of [4].
In [4], superresolution is approached stochastically by de-

termining the conditional expectation of high-resolution pixels
given low-resolution patches and training data. This is ex-
pressed in (9).

g(x) = E[y|x, Ω] (9)

where g(x) uses the training set Ω to estimate f : x �→ y.
As previously discussed, an all-encompassing function g(x)

is substituted by several smaller functions gj(x) according to
image content. By dividing the domain X into several classes
(done by assuming a Gaussian mixture as in [4]), we decide
which gj is useful for a given x. Thus, (9) is rewritten in (10)
as a weighted average of possible reconstructed values based
on various image content.
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Denoting the random variable J as the class number of input
x, we write:

E[y|x] =
∑

j

E[y|x, J = j]P (J = j|x) (10)

where we can determine

P (J = j|x) =
P (x|J = j)P (J = j)∑
j P (x|J = j)P (j = j)

(11)

when the likelihoods P (x|J = j) are determined by EM.
By approximating the class conditional expectations with

a regression device, i.e. E[y|x, J = j] = gj(x), the solution
becomes

E[y|x] =
∑

j

gj(x)P (J = j|x), (12)

and our approach is to apply SVR to estimate gj(x).
This is not a simple substitution in the implementation

because it requires altering the optimization problem slightly.
In [4], after forming the Gaussian PDF, each parameter for a
given class is generated by contributions from each training
point weighted by how far “in” the class the point is. For res-
olution synthesis, this is achieved by multiplying the posterior
probability in an MMSE-type expression. For kernel resolution
synthesis, this is not so easily done, as the parameters in kernel
resolution synthesis arise from a nonlinear optimization.
From the dual problem in (3), the weighting of training

points by their importance is analogous to the effect of C
on the solution hyperplane. The C variable is actually a cost
parameter whose value comes out of cross validation. In the
dual problem, the larger the cost parameter, the more the α

+/−
(i,j)

values can deviate for an exact regression, in effect granting
freedom to closely t the training data in exchange for atness
in the objective function. Therefore, for pair (xi, yi) ∈ Ω,
limiting α

+/−
(i,j) , also limits the effect of the ith point on the

solution hyperplane. In terms of the primal problem in (2),
C scales the slack variables ξ+

(i,j) and ξ−(i,j), restricting the
quantity of points deviating from the solution hyperplane and
by how much these points deviate.
Our answer is to scale each ξi for all points in Ω by how

relevant the ith point is to class j. This can be done with the
product of all ξ+/−

(i,j) with their corresponding posterior proba-
bilities Pij . So, for the jth regressor, the primal optimization
problem is described by

min
wj ,b

1
2
‖wj‖2 + C · −−→Pj|i (J = j|xi)

T (
−→
ξ+
j +

−→
ξ−j )

subject to

yi − (wj · φ(xi) + bj) − ε ≤ ξ+
(i,j)

(wj · φ(xi) + bj) − yi − ε ≤ ξ−(i,j)
ξ−(i,j), ξ

+
(i,j) ≥ 0 (13)

where
−−→
Pj|xi

(J = j|xi) denotes a vector of length N contain-
ing the posterior probabilities of classes. This way, we can
allow more slack for the variables that are less important (i.e.
have smaller posterior probabilities.) The probability vector
in (13) can be equivalently placed throughout the rest of the
derivations in Sec. III.

This solution has the potential to consume extensive compu-
tation both in CPU cycles and memory, and so a simpli cation
of the problem would be to consider per class those points
which meet a certain criterion with respect to their respective
posterior probabilities. This is implemented by partitioning Ω
into {Ωj} and considering the ith point for class j only if
its posterior probability exceeds a certain threshold. The nal
algorithm is depicted in Fig. 1.

(a) Training Algorithm

(b) Testing Algorithm

Fig. 1. Kernel Resolution Synthesis Algorithm

Granted, this simpli cation rejects considerable amounts of
data per class. Nevertheless, if SVR can indeed predict the
relationship between low and high-resolution, then the regres-
sion may be suf cient for less relevant points in a given class.
Furthermore, through experimentation, it turns out that only
a few classes at any given test point are chosen and used for
reconstruction the majority of the time. The implication from
this is that for the test point xtest, by multiplying Pj|x(j|xtest)
with gj(xtest) in (10), we would maintain good accuracy by
zeroing out test data that is irrelevant for a particular class
anyway, leaving reconstruction for those classes which can
accurately do so.

IV. RESULTS AND ANALYSIS
The SDP (μi ≥ 0) and QCQP problems in Sec. II have

been veri ed in a previous work [6] using the cvx [12]
Matlab toolbox result. Further experiments on images and
video frames for purposes of superresolution were carried
out using MOSEK [13], which computes the QCQP problem
in Sec. II-.2, alleviating the problem of the high complexity
inherent in the SDP problem.
The algorithm was set up with D = 5 and U = 2, meaning

that ILR was 5×5 and IHR was 2×2, with clustering features
of size 3 × 3 for 4 training images in the CalPhotos image
database from [14]. For fair comparison, the same training
set is used for any relevant learning algorithms involving a
training set to which we compare kernel resolution synthesis.
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Comparisons to new edge-directed interpolation (NEDI) [2],
subpixel edge localization (SEL) [15], resolution synthesis [4],
and bicubic interpolation are shown quantitatively for frames
in the bus sequence in Fig. 2 and qualitatively in Fig. 3. Kernel
resolution synthesis not only achieves more accuracy in PSNR
than its linear counterpart in [4] and other referenced methods,
visual comparisons offer better clarity in Fig. 3 as well.
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Fig. 2. PSNR Values in Video Frames: 8 Frames of the Bus Sequence.

(a) Original Image (b) NEDI

(c) SEL (d) Bicubic

(e) Resolution Synthesis (f) Kernel Resolution Synthesis

Fig. 3. Kernel Resolution Synthesis in comparison to various other techniques
on a zoomed portion of the 6th frame of the city video sequence.

Observing the visual results, resolution synthesis in Fig. 3(e)
is closest in quality to the proposed method, but there are

considerable errors near highly textured areas. Imperfections
in Fig. 3(b) could be a by-product of a 2×2, two pass system
in which [2] considers features independently. Experimental
results assert that joint consideration is advantageous because
optimization described by Sec. II results in a kernel with
all 3 × 3 features for most classes. Comparisons to simpler
interpolation techniques show that SEL enhances edges quite
well, perhaps even better than NEDI, though the result looks
slightly cartoonish. Additional images and comparisons can be
found at research pages on UCSD’s video processing website:
http://videoprocessing.ucsd.edu/∼karl/krs sr

V. CONCLUSION
This work has proposed an approach to single image su-

perresolution by offering a resolution synthesis framework for
classi cation in conjunction with a nonlinear regression tech-
nique in the form of a modi ed SVR. Thus, both generative
methods and discriminant learning methods are exploited to
offer good numerical and visual results.
There are several issues open to future work. For example,

one improvement becomes apparent when it is noted that for
U = 2, current SVR predicts four outputs independently, when
high-resolution inter-pixel relationships are highly correlated.
Recent developments in the learning of vectored functions
using operator-valued kernels [16] seem relevant and should
greatly aid the solution.
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