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ABSTRACT
When an oversampled FIR filter bank structure is used for

signal analysis, a main problem is to guarantee its invertibil-

ity and to be able to determine an inverse synthesis filter bank.

As the analysis scheme corresponds to a redundant decompo-

sition, there is no unique inverse filter bank and some of the

solutions can lead to artifacts in textured image filtering ap-

plications. In this paper, the flexibility in the choice of the in-

verse filter bank is exploited to find the best-localized impulse

responses. The design is performed by solving a constrained

optimization problem which is reformulated in a smaller di-

mensional space. Application to seismic data clearly shows

the improvements brought by the optimization process.

Index Terms— FIR digital filters, Transforms, Redun-

dancy, Optimization methods, Seismic signal processing,

1. INTRODUCTION

Concepts of sparsity and redundancy have emerged as fun-

damental notions in the signal processing community. They

are grounded on a redundant dictionary (instead of a basis)

which is generally able to approximate a class of signals by

the sum of a “small” number of atoms. One interesting subset

of these overcomplete linear transforms consists of oversam-

pled multirate filter banks (FBs). The latter possess advan-

tages over classical critically sampled FBs. The first one is

their improved robustness to noise and quantization. The sec-

ond advantage lies in their more flexible design: on the anal-

ysis side, perfect reconstruction (PR) properties are less strin-

gent in the oversampled case [1]; on the other side, synthesis

filters, when they exist, are not unique in general. However,

the appropriate design of inverse FIR filters remains com-

plex. Recently, closed-form optimal expressions were ob-

tained with 50% oversampled window DFT [2]. Filter banks

appear under different names in image processing. Their early

use was often limited to block transforms, such as the Hadamard

or the Discrete Cosine Transform (DCT), popularized by the

JPEG compression format. Its blocking or checkerboard arti-

facts at low bit-rates result from a relatively independent pro-

cessing of adjacent blocks. These annoying effects have pro-

moted the advent of lapped transforms (LTs) [3] and wavelets,

which generally overlap. While wavelets are still popular (re-

placing DCT in the JPEG 2000 standard), LTs regain favour in

signal processing [4], with for instance aliasing reduction us-

ing complex transforms, or the recent announcement of the H.

D. Photo format based on a biorthogonal LT. In [5], we have

proposed a method to guarantee that a given FIR analysis FB

can be associated with an FIR synthesis FB with PR property

and we have devised an algorithm to compute such inverse

filters. Its application to DFT based FBs was utilized for 3D

seismic data directional filtering. While generally providing

nice visual results, blocking artifacts, interfering with auto-

mated interpretation, could result from an inaccurate choice

of filtering parameters. This work contributes to an optimized

design of the inverse filters of an oversampled FB, based on

their time/space-localization. The solutions obtained by this

originally constrained minimization problem, re-formulated

as an unconstrained one, drastically reduce the filtering sensi-

tivity to shrinkage operations in the transform domain.

In Section 2, we first recall the polyphase representation

of FBs and we express the calculation of an inverse synthesis

FB through the solutions of an underdetermined linear sys-

tem. In Section 3, we address the optimal design problem and

reformulate it as an unconstrained minimization problem. In

Section 4, the proposed optimization is applied to DFT FBs,

and the practical sensitivity reduction of transformed domain

processing is demonstrated for seismic data filtering.

2. NOTATIONS AND PROBLEM

2.1. Notations

We first recall polyphase representation notations. Figure 1

represents a 1D M -band filter bank structure. The signal

(x(n))n∈Z is decomposed using M filters with impulse re-

sponses: (hi)0≤i<M , each one having finite length kN with

k ∈ N
∗. A decimation by an integer N is then performed.

From the LT viewpoint, we therefore have k − 1 overlapping

blocks of size N . The M outputs of the analysis FB are de-

noted by (yi(n))0≤i<M . The overall redundancy of the trans-

form is thus M/N = k′. We are interested in the oversampled
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Fig. 1. Oversampled M -channel filter banks.

case, i.e. k′ > 1.

With these notations, the outputs of the analysis FB are

expressed, for all i ∈ {0, . . . , M − 1} and n ∈ Z, as

yi(n) =
∑

p

hi(p)x(Nn− p)

=
∑

�

N−1∑
j=0

hi(N� + j)x(N(n− �)− j). (1)

Let H(�) = (hi(N� + j))0≤i<M,0≤j<N , � ∈ {0, · · · , k − 1}
be the k matrices obtained from the impulse responses of the

filters. We also define the polyphase vector signal from the

input signal x(n): ∀n ∈ Z, x(n) = (x(Nn− j))0≤j<N . A

more concise form for Eq. (1) is:

y(n) = (y0(n), . . . , yM−1(n))�

=
∑

�

H(�)x(n− �) = (H ∗ x) (n),

or, equivalently, y[z] = H[z]x[z], where H[z] =
∑k−1

�=0 H(�)z−�

is the M ×N polyphase transfer matrix of the analysis filter

bank and x[z] and y[z] are the z-transforms of (x(n))n∈Z and

(y(n))n∈Z, respectively. Similarly, we define the polyphase

transfer matrix of the synthesis filter bank: H̃[z] =
∑

� H̃(�)z−�

which is such that

x̃[z] = H̃[z]y[z].

The polyphase vector of (x̃(n))n∈Z is defined similarly as

(x(n))n∈Z and

H̃(�) =
(
h̃j(N�− i)

)
0≤i<N,0≤j<M

, � ∈ Z.

These expressions hold for any oversampled FB.

2.2. Problem statement

The goal is to achieve PR. In other words, we search a matrix

H̃[z] in C[z, z−1]N×M such that H̃[z] H[z] = IN . In our pre-

vious work [5], we have proposed a method to check whether

a given FIR analysis FB can be inverted by an FIR synthe-

sis FB: if H[z] is proven to be left invertible then there exists

an integer p such that the polyphase transfer function of the

synthesis FB reads: H̃[z] =
∑0

�=1−p H̃(�)z−�.

We obviously have

H̃[z]H[z] =
0∑

�=1−p

H̃(�)z−�
k−1∑
�=0

H(�)z−� =
k−1∑

�=1−p

U(�)z−�,

where

U(�) =
min(0,�)∑

s=1+max(�−k,−p)

H̃(s)H(�− s).

The PR property is then equivalent to U(�) = δ�IN , which

leads to the following linear equation:

HH̃ = U (2)

where

H̃� =
[
H̃(1− p), · · · , H̃(0)

]
,

U� =
[
0N,(p−1)N IN 0N,(k−1)N

]
,

and

H� =

⎛
⎜⎝

H(0) · · · H(k − 1) 0
. . .

. . .

0 H(0) · · · H(k − 1)

⎞
⎟⎠ .

We have to solve the above system for increasing values of p
in order to find the minimum order for an inverse polyphase

transfer matrix.

3. OPTIMIZATION OF THE SYNTHESIS FB

We have provided conditions for a polyphase matrix to be as-

sociated to a PR synthesis FB. Since this system is underde-

termined, we can exploit the remaining degrees of freedom to

optimize the characteristics of the synthesis FB, namely their

time/space localization.

3.1. Dimension reduction

Let r denote the rank ofH and assume that r < Mp. We per-

form a Singular Value Decomposition (SVD) on this matrix:

H = U0Σ0V∗0 ,

where Σ0 ∈ C
r×r is an invertible diagonal matrix, U0 ∈

C
N(k+p−1)×r and V0 ∈ C

Mp×r are semi-unitary matrices.

There exists therefore U1 ∈ C
N(k+p−1)×(N(k+p−1)−r) and

V1 ∈ C
Mp×(Mp−r) such that [U0 U1] and [V0 V1] are unitary

matrices. When an inverse polyphase transfer matrix exists, a

particular solution to (2) is:

H̃0 = H�U ,
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whereH� = V0Σ−1
0 U∗0 is the pseudo-inverse ofH. Eq. (2) is

then equivalent to:

U0Σ0V∗0 (H̃ − H̃0) = 0(N+k−1)×N .

Since U∗0U0 = Ir and Σ0 is invertible, we get

V∗0 (H̃ − H̃0) = 0r×N ,

which is equivalent to say that the columns of H̃−H̃0 belong

to the nullspace of V∗0 , Ker(V∗0 ). Since Ker(V∗0 ) is equal to

Span(V1), one can write:

H̃ = V1C + H̃0 (3)

where C ∈ C
(Mp−r)×N . The design of the synthesis filter

bank therefore reduces to the choice of C. In our previous

work, we took C = 0(Mp−r)×N . However, as illustrated by

Fig. 2-(a), this choice may result in synthesis filters with poor

time-localization properties.

3.2. Optimal solution

To obtain impulse responses (h̃j)0≤j<M (for the synthesis

FB) well-localized around some time-indices (mj)0≤j<M ,

we propose to minimize the following cost function:

J(h̃) =
M−1∑
j=0

∑
m(m−mj)2

∣∣∣h̃j(m)
∣∣∣2

∑
m

∣∣∣h̃j(m)
∣∣∣2

=
M−1∑
j=0

∑0
�=1−p

∑N−1
i=0 (�N − i−mj)2

∣∣∣H̃i,j(�)
∣∣∣2

∑0
�=1−p

∑N−1
i=0

∣∣∣H̃i,j(�)
∣∣∣2

.

Let us define, for all � ∈ {1− p, . . . , 0}, j ∈ {0, . . . , M − 1}
and n ∈ {0, . . . , Mp− r − 1}

Vj(�, n) = V1

(
(� + p− 1)M + j, n

)
where V1 = [V1(s, n)]0≤s<Mp,0≤n<Mp−r. According to (3),

we have:

H̃i,j(�) =
Mp−r−1∑

n=0

Vj(�, n)C(n, i) + H̃0
i,j(�)

where C = [C(n, i)]0≤n<Mp−r,i≤r0<N . Let us introduce the

matrices: H0
j = [H̃0

i,j(�)]1−p≤�≤0,0≤i≤N−1 and Λj defined

by: Λj = [(�N − i−mj)2]1−p≤�≤0,0≤i≤N−1. Then we can

write:

H̃i,j(�) = (VjC + H0
j )�,i.

Using the Frobenius norm:

0∑
�=1−p

N−1∑
i=0

∣∣∣H̃i,j(�)
∣∣∣2 =
∥∥VjC + H0

j

∥∥2

and the weighted Frobenius norm:

0∑
�=1−p

N−1∑
i=0

(�N − i−mj)2
∣∣∣H̃i,j(�)

∣∣∣2 =
∥∥VjC + H0

j

∥∥2
Λj

,

we deduce that:

J(h̃) = J̃(C) =
M−1∑
j=0

∥∥VjC + H0
j

∥∥2
Λj∥∥VjC + H0

j

∥∥2 .

The constrained minimization problem is now re-expressed

as the unconstrained minimization of J̃ .

4. APPLICATION AND RESULTS

4.1. Seismic data filtering

In [6] we showed complex-valued modulated filters were well-

suited to texture-like seismic data. Indeed, these data present

highly anisotropic features that are well captured by complex-

valued transforms, and their oscillatory behaviour, due to the

layered underground structure, is well described by an har-

monic transform. The analysis filters we used are derived

from [7] and expressed as: hi(n) = E(i, n)ha(n), where

E(i, n) =
1√
k′N

e−ı(i− k′N
2 + 1

2 )(n− kN
2 + 1

2 ) 2π
k′N ,

and (ha(n))1≤n≤kN is a non vanishing analysis window such

as:

ha(n) = sin
( nπ

kN + 1

)
.

Seismic data are typically two or three dimensional. By ap-

plying the above monodimensional transform separably in all

directions we define a multi-dimensional transform.

Unwanted directional structures, due to pre-processing or

physical perturbations during data acquisition for instance,

may corrupt seismic data and hinder subsequent automated

interpretation. In a nutshell, to perform a directional filter-

ing retaining features of interest, we first compute the locally

dominant direction, then filter out coefficients not correspond-

ing to orientations close to the dominant one, and finally use

thresholding to remove small coefficients likely to represent

noise. The appropriate choice of the threshold may constitute

an issue to the filtering robustness.

4.2. Optimal Synthesis Filter Bank

In Section 3 we have reduced the dimension of the problem

from MpN to (Mp − r)N . In practice, the rank r is large;

the dimension reduction is therefore significant to the compu-

tational burden of the synthesis. As an illustration we have

tested both the constrained and the unconstrained optimiza-

tions, with N = 8, k = 3 and k′ = 7/4, on a 3GHz Pen-

tium 4 processor. The computation of the optimal inverse
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took 247 seconds for the constrained problem, compared to 5
seconds with unconstrained optimization, including both the

SVD and the minimization; the re-formulation of the problem

thus leads to a significant computational gain.

Figure 2 represents the magnitude of the impulse responses

for 4 of the M = k′N = 14 synthesis filters in the pseudo

inverse and the optimal case. Coefficients in the first case

are quite scattered with large border coefficients (potentially

causing blocking artifacts), while in the second case the co-

efficient distribution seems more window shaped, better clus-

tered around the center of the impulse responses.

4.3. Results on real data

For this application, the parameters are set N = 16, k′ = 7/4
and k = 3. Using the method described in Subsection 2.2, it

is found that p = 3. We have chosen processing parameters

(the tolerance on the retained directions and the threshold) to

target a situation in which the reconstruction leads to poor

visual results. Figure 3 presents real seismic data which are

filtered and then reconstructed using both the pseudo-inverse

FB and the optimal one. On Fig. 3-(c), a grid pattern appears

in the pseudo-inverse case, due to high value of the thresh-

old and the poor impulse responses of the inverse filters. The

second filtered image (d) and the difference image (b) show

clearly that this pattern, without any geological meaning, is

strongly attenuated with the optimal FB, leading to better vi-

sual results.

(a) (b)

Fig. 2. Examples of the magnitude of the impulse responses

in (a) the pseudo-inverse case and (b) after optimization.

5. CONCLUSIONS

By taking advantage of the degrees of freedom offered by

oversampled FBs, we have proposed a method to design opti-

mally spatially-localized synthesis FBs. Our study allows us

to reduce the design problem to an unconstrained optimiza-

tion which can be solved quite efficiently by numerical meth-

ods. The resulting optimized FBs have been shown to be ap-

propriate for seismic data filtering. In our future work, we

plan to consider more general forms of cost functions.

(a) (b)

(c) (d)

Fig. 3. (a) Seismic image, (b) Difference between the two fil-

tered results, (c) Filtered with pseudo inverse FB (d) Filtered

using optimal FB.
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