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ABSTRACT

The Radon Transform (RT) is known to be effective in de-

tecting lines in noisy images, but it is not capable of detect-

ing curves unless the curve parametrization is given. In this

paper, partial Radon transforms (PRT) are investigated as a

tool to detect curved features such as underground tunnels in

ground penetrating radar (GPR) images. The algorithm ap-

plies the Radon Transform to small batches of the total image

and updates the tunnel position parameters as new batches are

used. Missing data, as well as finding the ends of tunnels can

be handled with the proposed algorithm. Performance analy-

sis is given for various signal-to-noise ratios (SNR) and batch

sizes. The effect of the curvature level on the performance is

also analyzed.

Index Terms— Radon transforms,tunnel detection, curve

estimation, partial Radon Transform

1. INTRODUCTION

The Hough Transform (HT) [1] and the Radon Transform

(RT) [2] are two commonly used techniques for line detection.

These transforms map an image into a parameterized domain

such that the parameterized shapes (i.e., lines) correspond to

peaks in the parameter domain. This property makes it easier

to develop detection algorithms in parameter space, which has

led to many applications in image processing [3,4], computer

vision [3, 5] and underground imaging [6, 7]. Line detection

techniques can be extended to the detection of curves using

the generalized Radon Transform (GRT) [8–10]. Previous

work on curve estimation using Radon transforms has focused

on detection of parameterized curves, such as circles in im-

ages [8], or hyperbolas and other parameterized curves [9,10].

However, none of the work on this area has addressed the

problem of estimating a random non-parameterized curve.

The RT has been successfully applied to detect buried lin-

ear features [6, 7, 11], assuming that the buried object (e.g.,

a tunnel, or pipeline) is linear over the distance of interest.

However, it is not reasonable to assume that buried objects
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are always linear over long distances, so the GRT fails to de-

tect curving features when the actual curve parametrization is

not known. In this paper, we propose using the RT in small

batches of data where the buried object might be assumed lin-

ear, and then update the position of the buried object when

new data is gathered. Thus, selection of the batch size is cru-

cial; for small batch sizes the Radon gain from summing the

signal values decreases, for large batch sizes the object might

curve which decreases the Radon gain. A batch size that takes

into account both of these factors must be used.

In Section 3 simulated GPR reflections from a curving

tunnel are generated. The proposed method is able to detect

the tunnel when the classical RT fails. Performance of the al-

gorithm for varying levels of signal-to-noise ratio (SNR) and

different batch sizes are analyzed. It is observed that the mean

square error (MSE) decreases for increasing SNR. Also, it is

seen that there is an optimum batch size that depends on the

curvature of the buried tunnel. For a fixed batch size and SNR

the tunnels having higher curvature had higher MSE values.

The next section explains the proposed algorithm in detail.

2. THEORY

The RT maps an image into a parameterized domain such that

the parameterized shapes (i.e., lines) correspond to peaks in

the parameter domain. The Radon transform of a digital im-

age f(x, y) using the parametrization of a line can be given

as follows:

R(m, n)[f(x, y)] =
∫ ∞

−∞
f(x,mx + n)dx (1)

where m and n are the slope and the intercept of the line,

respectively. The GRT, which maps specific parameterized

curves into peaks in parameter space can be formulates as

R(j)[f(x, y)] =
L−1∑
l=0

f(φx(l, j), φy(l, j)) (2)

where j is a multi-dimensional vector defining the curve pa-

rameters and φx(l, j) and φy(l, j) are functions that define the

specific curve. While the GRT is effective in detecting any
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kind of specific known curve in images, it cannot detect a

curve whose structure is unknown. The proposed method ap-

plies the RT with line parametrization (1) to smaller batches

of an image and tries to estimate the curving structure from

linear segments obtained from different batches.

Our problem can be stated as estimating a curving func-

tion f(n) from partial linear approximations. An illustration

of the problem and the approach taken is shown in Fig. 1

Assume we have an image of size L × L and the RT is ap-

Fig. 1. Estimating a curve from partial linear approximations

plied on batches of size M × L where M � L. For batch i
if a line is detected in the parameter domain a linear approxi-

mation is obtained as

f̂i(l) = mil + ni (3)

where i ≤ l ≤ i + M − 1 for i = 1, 2, 3, ...L − M + 1 and

(mi, ni) are the slope and intercept values of the detected line.

In this way L − M + 1 linear approximations of the curving

function f(n) are obtained. These partial linear approxima-

tions can be seen in Fig. 1. For each point n the estimate can

be found as the average of the linear approximations for that

point:

f̂(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
n

n∑
k=1

f̂k(k) n < M

1
M

n∑
k=n−M+1

f̂k(k) M ≤ n ≤ L − M

1
L−n+1

L∑
k=n

f̂k(k) n > L − M

(4)

There may be no line detections in some batches. This

is not a problem since the estimator only uses the average of

detected lines for estimating the position of curve at one point.

For a curve to end, or not be detected, at one point at least M
consecutive batches should not have any line detections.

If multiple line detections in batches are obtained, an as-

sociation of the line parameters with the curves are needed. It

is possible for a high GPR clutter response (i.e., cans, rocks)

to dominate the RT detection, resulting in incorrect line pa-

rameters. Line detection in dominant clutter can be solved

iteratively [11]. This paper focuses on the detection of one

curve in high noise; while the problem of detecting curving

structures in dominant clutter will be addressed in a future

work.

Selection of the batch size M is critical. On one hand,

increasing M might decrease the advantage of Radon gain if

the tunnel is curving, on the other hand decreasing M might

cause missed detections in Radon space due to the adding up

only a small number of signal values while not getting enough

incoherent averaging of the noise. The optimal batch size

should be selected to maximize the probability of detection

(PD) of a line in the batch [6]

PD = Q

(
Q−1(PFA) − μmin(M,RS)√

Mσ2

)
(5)

where μ is average signal value, σ2 the noise variance and

RS the maximum Radon votes from the curving structure in

the batch. The Radon Transform implementation finds the

line with most votes from the curve. Note that without dis-

cretization all lines are tangent to a curve at one point only.

Most votes come from the lowest sloped part of the curve; in

a second-order curve, f(x) = ax2 + bx + c the number of

Radon votes can be approximated as RS ≈ √
(2/a). The op-

timal batch size M should maximize (5). Since Q is the area

in the tail of a Gaussian function and Q−1(PFA) is positive

for all PFA, an optimal M must satisfy

M∗ = arg max
M

μmin(M, RS)√
Mσ2

⇒ M∗ = RS (6)

From (6) it can be seen that the optimal batch size should be

equal to the maximum number of Radon votes, RS . Since RS

depends on the curvature, a, this varies from curve to curve.

However, an average value of curvature can be selected for

detecting the structure in images.
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3. SIMULATIONS

The proposed algorithm was tested on simulated underground

tunnels. For this purpose, a GPR simulated data generation

program was developed in MATLAB. System specifications

such as aperture size, antenna height, the transmitter-receiver

distance, target depth, and soil type, conductivity are all ad-

justable parameters of the program. Targets are simulated as

point targets. A tunnel is represented with many point-like

targets forming a defined curve.

Result 1: In this example, a tunnel described by the curve

parametrization y = 40 + 0.01(x− 100)2 at a depth of 20 cm

is simulated. A two-layer model with dry soil type is used.

The system parameters are antenna height 10 cm, transmitter-

receiver distance 10 cm, antenna step size 2 cm (100 total steps

are simulated). The tunnel is formed with point-like targets at

each x position on the specified curve and depth. For the sim-

ulated tunnel response, a data cube is obtained. The square

of the data along the depth axis is summed to obtain a sur-

face energy image, shown in Fig. 2. Clutter is assumed to be
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Fig. 2. Raw Surface Energy Image

zero-mean additive white gaussian noise (WGN). This clutter

model is added to the raw tunnel data. The signal-to-noise ra-

tio (SNR) is defined as the ratio of the maximum signal power

in the image to the average noise variance. Figure 3 shows

results from the RT (line parametrization) and the proposed

PRT algorithm on a surface energy image.

As seen in Fig. 3, while the RT incorrectly finds a line

nearly tangent to the curving structure, the proposed algo-

rithm finds the curve correctly. In the PRT algorithm, M =
20 is used as the batch size.

To compare the performance of the algorithm for varying

parameters, a mean square error metric is defined as

MSE =
1
N

√√√√ N∑
n=1

(f(n) − f̂(n))2 (7)
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Fig. 3. (a) Processing results with RT and PRT detected for

the noise-free case, (b) Detected Structures for RT and PRT

on a 20-dB surface energy image.

where N is the total number of points. For the case in Fig.3,

the MSE for the RT and proposed algorithm are 31 cm and

0.88 cm, respectively.

To analyze the performance of the algorithm with varying

noise levels the algorithm is applied to images with SNRs of

10 dB, 0 dB −7 dB. The batch size is M = 20 for all noise

levels. The detected lines with the correct target positions are

shown in Fig. 4. Figure 4 shows how the performance of the
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Fig. 4. Detected Lines for different noise levels

algorithm decreases with increasing noise levels, but the per-

formance depends not only on the SNR level, but also on the

batch size. A second simulation was performed to observe the

effect of SNR and batch size. At each SNR and batch size the

algorithm is run and the MSE is computed. This procedure

is repeated 100 times and the average MSE value is obtained

for each SNR and M . The figure of merit 1/MSE is plotted

in Fig. 5 for each SNR and M .

From Fig. 5, it can be observed that there is an optimum

batch size (i.e., 15–20) that gives better performance for nearly

all SNR. This optimum batch size is also very close to the
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Fig. 5. 1/MSE for varying SNR and batch size values

approximate Radon vote for the curvature which is RS ≈√
(2/0.01) ≈ 14. For low SNRs the MSE increases for all

batch sizes and the dependence on batch size is less important.

In addition to SNR and batch size, the curvature of the

structure to be detected also effects the performance of the

algorithm. To observe this, simulated GPR data from three

curves with varying curvatures was generated. The curves

are formed by y = 40 + a(x − 100).2 with the parameter

a equal to 0.005, 0.01 and 0.015 for the three cases. The

PRT algorithm is run on all three data sets with a 10-dB SNR

level and M = 20. The detected curves and the correct target

positions are shown in Fig. 6. The lower curvature line fits
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Fig. 6. Effect of curvature level on detection performance

the true positions better than higher curvature ones. The MSE

values for the curves (from lower to higher curvature) are 0.83
cm, 1.12 cm and 2.24 cm respectively.

4. CONCLUSIONS

The partial Radon Transform was used to detect curving tun-

nels in GPR images. Simulated data results show that the pro-

posed algorithm successfully detects the underlying curves,

where classical RT fails.
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