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ABSTRACT

We introduce a new bistatic synthetic-aperture imaging method for
a radar system consisting of two receivers, which will be referred to
as hitchhikers, and a source of opportunity. We assume the receivers
y along arbitrary, but known, ight trajectories.
We develop a correlation-based ltered-backprojection recon-

struction method that preserves the visible edges of the target scene
in the reconstructed image. We present an analysis of the compu-
tational complexity of the introduced method and demonstrate its
applicability in numerical simulations.

Potential applications of the proposed method include image for-
mation using low earth orbiting and space-borne satellites as sources
of opportunity.

Index Terms— Bistatic synthetic aperture radar, correlation l-
tering, tomography, ltered backprojection, hitchhiking.

1. INTRODUCTION

A radar whose transmitter and receiver are suf ciently separated is
called a bistatic radar. When a bistatic radar is mounted on space
or airborne platform(s) it is called a bistatic synthetic-aperture radar
(BISAR). A hitchhiker is a receiver that uses sources (/transmitters)
of opportunity to detect and locate targets [15, 16, 11, 6]. For the rest
of the presentation we will use the terms “source” and “transmitter”
interchangeably.

In this paper, we consider a synthetic-aperture imaging system
consisting of two receivers traversing arbitrary ight trajectories that
use a source of opportunity for imaging as illustrated in Figure 1.
Due to its combined BISAR and hitchhiking structure, we refer to the
system under consideration as bistatic synthetic aperture hitchhiker
(BISAH).

Fig. 1. Bistatic synthetic aperture hitchhiker geometry.
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While, for the current discussion, we consider a static coopera-
tive transmitter, where the information (location of the transmitter,
transmitted waveforms, antenna beam pattern, etc.) about the source
is available, the method we introduce is also applicable to multiple
static and/or mobile cooperative and/or non-cooperative transmitters
(such as transmitters on low-earth-orbiting and space-borne satellites
[4, 5]), where information about the sources is not available. We
present a ltered-backprojection (FBP) reconstruction method that
preserves the visible edges of the target scene at the correct location
and orientation in the reconstructed image.

Our work provides a tomographic approach to correlation-based
imaging methods and introduces a new FBP-type reconstruction
method. In particular, we have combined the “correlation” methods
presented in [1, 3] with microlocal techniques [8, 9] to develop FBP-
type reconstruction methods for BISAH. Given a pair of receivers,
the spatial-correlation method compares the received signals to iden-
tify a target within the illuminated scene, eliminating the need for
knowledge about the transmitter location and waveform. Microlo-
cal techniques provide an approximate FBP-type inversion method;
however, if an exact inversion is possible, the result often reduces to
the exact inversion formula. Furthermore, the FBP-type inversions
have the desirable property that visible edges in the target scene not
only appear at the right location and at the right orientation but also
at the right strength in the reconstructed image. Thus, we perform re-
construction in three steps: First correlate the received signals; next
lter the correlated signal; and nally backproject the correlated and
ltered signals along the intersection of the illuminated surface and

the hyperboloid H12 de ned in Section 3. We compare our method
to the BISAR reconstruction method introduced in [17], present the
analysis of computational complexity for both methods, and com-
pare their performances in numerical simulations.

The organization of the paper is as follows. In Section 2, we start
with the introduction of the system under consideration and present
the forward model. In Section 3, we present the correlation-FBP-
type image reconstruction methods for cooperative sources of oppor-
tunity. In Section 4, we compare our method with the matched- lter-
FBP reconstruction method for bistatic synthetic-aperture radar. In
Section 5, we demonstrate the performance of our method in numer-
ical simulations. Finally, we conclude our discussion in Section 6.

2. FORWARD MODEL

Let γR1(s) and γR2(s), s ∈ R be the BISAH trajectories. Let x =

(x, ψ(x)) ∈ R3 denote the surface of the earth, where x = (x1, x2)
and ψ : R2 → R is a known smooth function.

We assume that the electromagnetic waves propagate in free space
and then scatter in a thin region at the earth’s surface. Under the start-
stop approximation, the single-scattering (Born) approximation of
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the received signal at the ith (i = 1, 2) receiver due to a transmitter
located at y ∈ R3 can be modeled as [8]:

di(s, t)≈
�

e−i2πω(t−ri,y(s,x)/c0)Ai,y(ω, s,x)G(x)dω dx, (1)

where i =
√−1, t is the fast-time variable, s is the slow-time vari-

able that parameterizes the trajectory, ri,y(s,x) = |y − x| + |x −
γRi

(s)| is the total travel time, c0 denotes the speed of light, G(x)
denotes the ground re ectivity, and

Ai(ω, s,x) =
π

2
ω2

Ji(ω, s,x)

|γRi
(s)− x|

Jy(ω, s,x)

|x− y| , (2)

where Ji is the receiver antenna beam pattern and Jy is the transmit-
ter antenna beam pattern (which also includes the transmitter wave-
form).

The ideal image reconstruction problem is to estimateG from the
knowledge of di(s, t), i = 1, 2, for some range [sa, sb] and [0, t0] of
s and t, respectively. For monostatic SAR and BISAR, the general
strategy for estimatingG is to perform matched ltering followed by
FBP (MF-FBP) [12, 8, 17]. In this paper we will take an alternative
approach to MF-FBP: instead, we form our images by the method
described above, namely correlation followed by FBP. We refer to
the resulting method as C-FBP. We discuss this in more detail below.

3. IMAGE FORMATION VIA C-FBP

De ne the correlation of d1 and d2 by

d12(s, s
′, t) =

�
d1(s, τ)d

∗
2(s+ s

′, τ − t)dτ, (3)

where ∗ denotes complex conjugation, and di(s, t) is

di(s, t) = di(s, t)− E[di(s, t)], i = 1, 2. (4)

Let CG denote the auto-covariance of G, i.e.

CG(x,x′) =E
��
G(x)− E[G(x)]

��
G(x′)− E[G(x′)]

�∗�
. (5)

Then

E[d12(s, s
′, t)] =

�
e−i2πω(t−[|x−γR1

(s)|−|x′−γR2
(s+s′)|]/c0)

×A12(ω, s, s
′,x,x′)CG(x,x′)dω dx dx′,

(6)

where

A12(ω, s, s
′,x,x′) = ei2πω([|y−x|−|y−x

′|]/c0)

×A1(ω, s,x)A∗2(ω, s+ s′,x′) (7)

We make the incoherent- eld approximation [2] to (6) by assum-
ing that G is statistically uncorrelated in x:

E[G(x)G(x′)∗] = E[G(x)]E[G(x′)]∗. (8)

Thus we write CG(x,x′) = RG(x)δ(x − x′) and simplify (6) to

F [RG](s, s′, t) =

�
e−i2πω(t−r12(s,s

′,x)/c0)

×A12(ω, s, s
′,x,x)RG(x) dω dx, (9)

where r12(s, s′,x) = |x − γR1(s)| − |x − γR2(s + s′)| and

RG(x) = E
���G(x) − E[G(x)]

��2� is referred to as the radiant

exitance or radiance of the object [2].
For somemA, we assume that A12 satis es

sup
(s,x)∈K

���∂αω∂βs ∂β′s′ ∂ρ1x1∂ρ2x2A12(ω, s, s
′,x,x)

���
≤ CA(1 + ω2)(mA−|α|)/2 (10)

where K is any compact subset of R × R
2, and the constant CA

depends on K,α, β, β′, ρ1, and ρ2. This assumption is needed in
order to make various stationary phase calculations hold. In practice
(10) is satis ed for transmitters and receivers suf ciently far from the
ground, especially for air- or space-borne transmitters and receivers.

Equation (9) de nes F as a Fourier integral operator [13]
whose leading-order contribution comes from those points lying
in the intersection of the illuminated surface and the hyperboloid
H12(s, s

′, t) = {x : r12(s, s
′,x) = c0t}, which for at topogra-

phy, i.e. ψ(x) = 0, is simply a hyperbola on the plane x3 = 0.
Thus an approximate inversion of F can be computed by a suitable
backprojection:

K [F [RG]] (z) =

�
ei2πω(t−r12(s,s

′,z)/c0)Q(z, ω, s, s′)

×F [RG](s, s′, t) dt dω ds ds′, (11)

where K will be referred to as the (FBP) imaging operator and Q is
the lter to be determined next.

Substituting (9) into (11), we approximate RG by

R̃G(z) = KF [RG](z) =

�
L(z,x)RG(x)dx, (12)

where

L(z,x) =

�
ei2πω[r12(s,s

′,x)−r12(s,s
′,z)]/c0

×Q(z, ω, s, s′)A12(s, s
′, ω,x,x)dω ds ds′, (13)

is the point spread function. We would like to make L(z,x)
as close as possible to the Dirac delta function δ(x − z) =�

exp(i2π(x − z) · ξ) dξ. In this regard, we write

[r12(s, s
′,x)− r12(s, s′, z)] = (x − z) ·Ξ(s, s′,x, z), (14)

and for xed s′, x and z, make the change of variables

(s, ω) → ξ =
ω

c0
Ξ(s, s′,x, z), (15)

in the integral of (13) to obtain

L(z,x) =

�
ei2π(x−z)·ξQ(z, ξ, s′)

×A12(ξ, s
′,x,x)η(x, z, ξ, s′)dξ ds′, (16)

where Q(z, ξ, s′) = Q(z, s(ξ), ω(ξ), s′), and η(x, z, ξ, s′) =
|∂(s, ω)/∂ξ|, is the determinant of the Jacobian that comes from
the change of variables (15).

Using the method of stationary phase, under assumption (10), the
leading-order contribution to R̃G is

R̃G(z) ≈
�
Ω
z,s′

ei2π(x−z)·ξQ(z, ξ, s′)A12(ξ, s
′, z, z)

× η(z, z, ξ, s′)RG(x)dx dξ ds′, (17)
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where

Ωz,s′ = {ξ = ω/c0Ξ(s, s′, z, z) | A12(ω, s, s
′, ω, z, z) �= 0,

s ∈ [sa, sb]}, (18)

with

Ξ(s, s′, z, z) = Dψ(z)·
�
z−γR1(s)
|z−γR1(s)|

− z−γR2(s+ s′)
|z−γR2(s+ s′)|

�
,

(19)

where

Dφ(z) =

�
1 0 ∂ψ(z)/∂z1
0 1 ∂ψ(z)/∂z2

�
. (20)

Here, we assume that the ight trajectories of the receivers are
smooth and that the receiver antenna beam patterns are focused on
one side of their ight trajectories so that the only illuminated critical
point is x = z. Thus, with the choice of

Q(z, ω, s, s′) =
χΩ

z,s′
(ξ(s, ω))

η(z, z, ξ, s′)

A∗12(ω, s, s
′, z, z)

|A12(ω, s, s′, z, z)|2 (21)

where χΩ
z,s′

is a smooth cut-off function equal to one in most of
the interior of Ωz,s′ and zero in the exterior of Ωz,s′ , (17) becomes

R̃Gct(z) ≈
�

ei(x−z)ξχΩ
z,s′

(ξ)RG(x)dx dξ ds′. (22)

Equation (22) shows that the image R̃Gct is a band-limited version
of RG whose frequency content, by (15), is determined by the union
of Ωz,s′ . Mircolocal analysis of (22) tells us that an edge at point z
is visible if the direction nz normal to the edge is contained in the
union ∪s′Ωz,s′ [10, 8, 9]. Thus by (22) one can only reconstruct the
edges of RG that are visible.

4. MF-FBP VERSUS C-FBP

Given d(s, t), in MF-FBP, we approximate the re ectivity function
G by [17]

G̃(z) ≈
�

ei2πω(t−r1,y(s,z)/c0)QMy (ω, s, z) d(s, t) dω dt ds,

(23)

where the lter QM is given by

QMy (ω, s, z) =
χΩM

z

(ξM (s, ω))

ηM (z, z, ξ1)

AMy
∗
(ω, s, z)

|AMy (ω, s, z)|2 . (24)

Here

ΩMz = {ξM = (ω/c0) Ξ
M (s, z) |AMy (ω, s, z) �= 0, s ∈ [sa, sb]}

(25)

with

Ξ
M (s, z) = Dψ(z)·

�
z− γR1(s)

|z− γR1(s)|
+

z− y

|z− y|
�
, (26)

χΩM
z

is a smooth cut-off function equal to one in most of the interior

of ΩMz and zero in the exterior of ΩMz , and ηM is the determinant of
the Jacobian that comes from the change of variables [17]

(s, ω) → ξ
M = ω/c0 Ξ

M (s, z). (27)

Then, comparison of MF-FBP reconstruction formula (23) with
C-FBP reconstruction formula (11) can be summarized as follows:

1. Correlation provides an extra degree of freedom, namely s′;

2. MF-FBP reconstructs the mean of the target scene while C-
FBP reconstructs the variance;

3. MF-FBP backprojects the data onto the ellipsoidsE(s) = {x :
r1,y(s,x) = c0t}, which requires knowledge of the locations
of both the transmitter and the receivers. On the other hand,
C-FBP backprojects the correlation of the data onto the hyper-
boloids H12, which only requires the knowledge of receiver
locations.

4. The frequency content of MF-FBP and C-FBP reconstructions
are determined by the unions ∪(s′,z)Ωz,s′ and ∪zΩMz , respec-
tively.

5. An edge at point z is visible in MF-FBP and C-FBP recon-
structions if the direction normal to the edge is contained in
∪s′Ωz,s′ and ΩMz , respectively.

5. NUMERICAL SIMULATIONS

In our numerical simulations, we considered a scene of size [0, 22]×
[0, 22] km2 which is discretized by 128 × 128 pixels as illustrated
in Figure 2(a); isotropic transmitter and receiver antennas; circular
ight trajectories γR1(s) = γR2(s) = γ(s) = (11+22 cos s, 11+

22 sin s, 6.5) km, uniformly sampled for s ∈ [0, 2π) at 512 points;
and a transmitter located at (0, 0, 6.5) km radiating a delta-like im-
pulse. Thus we generate the projection data (see Figure 2(b)) using
(1) for Ai,y(ω, s,x) = (|γ(s)− x||x− y|)−1.
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Fig. 2. (a) Scene used in numerical simulations. (0, 0, 0) km and
(22, 22, 0) km are located at the upper left and lower right corners,
respectively. (b) The projection data of the scene obtained using (1).

We implemented the inversion formulae (11) and (23). For xed
s′, (11) requires to perform a FBP operation. Assuming that there
are O(N) samples in both fast-time and slow-time variables, and
the scene is sampled at O(N × N) points, for each s′ the FBP op-
eration can be implemented in O(N3) operations. Thus in total the
presented inversion method requiresO(N4) operations. If fast back-
projection methods are used [7, 14], the computational complexity
of the reconstruction can be improved to O(N3 logN). Similarly,
(23) requires O(N3) operations, which, using fast backprojection
methods, can be improved up toO(N2 logN).

The computational complexity of our implementation of the in-
version formulae (11) and (23) areO(N4) andO(N3), respectively.
The reconstructed images are presented in Figures 3(a) and 3(b), re-
spectively.

Due to the choice of circular ight trajectories, all the edges of
the scene are visible for both the C-FBP and the MF-FBP methods.
Our numerical simulations demonstrate that the reconstructed image
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Fig. 3. Reconstructed images using (a) (11) and (b) (23).

using C-FBP is comparable to that of MF-FBP. Although C-FBP has
a greater computational complexity than MF-FBP, C-FBP does not
require the knowledge of the transmitter location, and can therefore
be used for non-cooperative sources of opportunity. To demonstrate
this, we replace the source-related terms in the reconstruction lter
(21) by the function 1 and present the reconstructed image using the
modi ed lter in Figure 4.

20 40 60 80 100 120

20

40

60

80

100

120

Fig. 4. Reconstructed image using (11) for a non-cooperative trans-
mitter.

6. CONCLUSION

We presented a novel image reconstruction method for a bistatic
synthetic-aperture hitchhiker system in the presence of a source of
opportunity. We compared our method to the method introduced
in [17] and demonstrated its performance in numerical simulations.
Further properties and advantages of the presented method will be
reported in our future research.
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