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ABSTRACT 

We propose two new methods for wideband array signal 
imaging for targets situated in unknown random media. 
First, a normalized coherent interferometric (N-CINT) im-
aging algorithm is developed based on coherent interfer-
ometric (CINT) imaging theory, yielding improved imaging 
performance with experimental data. Second, a phase-
difference analysis (PDA) method is proposed to signifi-
cantly reduce computation time and to improve imaging 
quality. The parameters in the two methods are determined 
adaptively by optimizing an objective function. Experiments 
are carried out for electromagnetic scattering using a linear 
antenna array, providing a demonstration of these methods.  

Index Terms— Arrays, random media, imaging 

1. INTRODUCTION  

Wideband array imaging has been of interest for decades in 
a wide variety of imaging applications. One of the challeng-
ing problems is to image a target situated in an unknown 
random media. Kirchhoff migration is a widely used ap-
proach, assuming that the medium is homogeneous, and it 
works well in smooth and known media. However, this 
method is unreliable when applied to data scattered from 
unknown random inhomogeneous media, since the scattered 
field may be significantly deformed due to the random in-
homogeneous media [1][2]. As an alternative, the time-
reversal technique yields super-resolution imaging in ran-
dom media [3][4], but it requires strict knowledge of the 
media propagation properties.  
      Coherent interferometric (CINT) theory was recently 
proposed in the mathematics community to exploit the co-
herence of array data in space and frequency [1][2]. In the 
CINT method, each datum at a given frequency and sensor 
location is assumed only coherent with its neighbor within a 
learned spatial and spectral region, which is centered at the 
given frequency and location and defined by the decoher-
ence frequency and decoherence length. The CINT imaging 
algorithm adaptively determines the decoherence frequency 
and length by optimizing a functional [2]. Although simu-
lated results show good performance of the adaptive CINT 
algorithm in random media when employing a large-

aperture array, there are two drawbacks in real applications, 
based on our experience with data like that considered be-
low. First, the CINT algorithm may fail when there are large 
variations in the magnitude of the scattering data. Second, 
the CINT algorithm is computationally time-consuming 
since the optimization is achieved by searching in a two-
dimensional region defined by the decoherence frequency 
and decoherence length.  
      To avoid these disadvantages, we first develop a nor-
malized coherent interferometric (N-CINT) algorithm to 
improve the imaging performance for real applications, by 
suppressing magnitude variability across the array. The 
measured data are normalized such that each array element 
plays an equal role in imaging, which consequently is found 
to yield improved imaging results on measured data. How-
ever, the computational complexity still remains for N-
CINT. A phase difference analysis (PDA) method is there-
fore proposed, which employs the phase difference instead 
of the two parameters in CINT and N-CINT, to seek a set in 
which all data points have small phase disturbances and thus 
are coherent for imaging. This set is obtained adaptively by 
optimizing the same functional as applied in CINT. The 
performance of the CINT, N-CINT and PDA algorithms are 
examined based on data from electromagnetic scattering 
measurements.  
      The remainder of the paper is organized as follows. A 
brief review of the CINT and the N-CINT algorithms is 
provided in Sec. 2. In Sec. 3 the PDA method is introduced, 
and the experimental system and example imaging results 
are presented in Sec. 4. This is followed in Sec. 5 by con-
clusions. 

2. N-CINT ALGORITHM 

2.1. CINT theory  

Consider an active array, with N  linear receivers located at 
Nnn ,...,1,r , and one transmitter located at sr , employed 

to image a target located at unknown position tr  situated in 
random media (the media is fixed but unknown, and is as-
sumed to represent one sample from an unknown underly-
ing distribution). The transmitted signal )(ts  is a wideband 
pulse with frequency spectrum )(S , and the scattered field 
produced by the target at receiver nr  is ),( nP r . For ran-
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dom media, two intrinsic and characteristic coherence pa-
rameters in the array data ),( nP r  are defined as follows 
[1][2]: the decoherence frequency d  which is the differ-
ence in frequencies  and '  over which ),( nP r  and 

)',( nP r  become uncorrelated, and the decoherence length 
dX  which is the difference in receiver locations nr  and 'nr

over which ),( nP r  and ),( 'nP r  become uncorrelated. 
The coherent interferometric (CINT) functional is given 
by[1][2]  
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where r  represents the imaging location and ),( ba rr  is 
the travel time between location ar  and br . Specifically, (1) 
is equal to the square of the Kirchhoff migration functional 
when the array data are coherent over the full frequency 
band B  and the full aperture A , i. e., Bd , AX d
[5]. The CINT functional can be viewed as a smoothed ver-
sion of Kirchhoff migration. Smoothing increases the statis-
tical stability of the image but causes blurring.  
      For particular random media the coherence parameters 
are adaptively determined by minimizing the objective func-
tion  
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denotes 1L  norm on imaging domain D . We note that the 
desired parameters d  and dX  are obtained adaptively by 
optimizing the functional in (2), which is explicitly based on 
the quality of the image. This functional penalizes the spuri-
ous fluctuations by minimizing the gradient of the image in 
a norm and controls the blurring by minimizing the image in 
a sparsity promoting norm; we employ the 1L  norm.  

2.2. N-CINT algorithm  

To suppress magnitude variability in the array-position-
dependent scattering data, we normalize the discrete meas-
ured data ),( mnP r  by utilizing a complex weight mnw , .
The normalized data is given as  

),(),(~
, mnmnmn PwP rr ,                          (3) 

where Nn ,...,1  and Mm ,...,1 . The measured data can 
be decomposed as 

),,(),,()(),(),( mtnmstmmnmn GGSBP rrrrrr ,  (4) 
where )),(exp(),,( bammba jG rrrr  is the Green’s 
function from ar  to br  with the travel time ),( ba rr  in the 
random media; ),( mnB r  is a real coefficient, which in-
cludes but is not limited to the effects of the antenna fre-
quency characteristics, and the scattering factor of the target, 
and the propagation attenuation. We seek to mitigate ampli-

tude variability caused by ),( mnB r  and )( mS  by choos-
ing the weight as  

)(),(1, mmnmn SBw r .                        (5) 
Substituting (4) and (5) into (3), we obtain  
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For practical implementation, (6) is rewritten as  
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The normalized CINT algorithm is realized by applying the 
normalized data (7) instead of ),( mnP r  into the CINT 
functional in (1). Similarly, the coherence parameters are 
adaptively determined by optimizing (2).  

3. PDA METHOD  

Although the N-CINT algorithm is found in practice to 
achieve improved imaging results relative to CINT, it is 
computationally expensive, especially with a large-aperture 
and wide-bandwidth array. This is because the two coher-
ence parameters are optimized over a large 2D domain, to 
attain desired imaging quality. Since both parameters are 
related to the data phase, the phase difference analysis 
(PDA) method proposed in this paper seeks one parameter, 
the phase difference, to determine the characteristics of the 
data coherence. We use normalized data in PDA imaging as 
applied in the aforementioned N-CINT algorithm (for the 
same reasons as stated above). For simplicity, the symbol 
‘~’ on variables denotes normalized quantities, with nor-
malization implemented as above.  
      The normalized data in (6) can be expressed as  
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where ),,,(~
mstnG rrr  is a normalized version of 

),,(),,(),,,( mtnmstmstn GGG rrrrrrr associated 
with the random media from sr  to tr and then back to nr ,
while ),,,(~

0 mstnG rrr  represents the same for the corre-
sponding Green’s function in a homogeneous media, with 
travel time the same as G

~ . The first term on the right side 
of (8) yields an ideal image of the target in homogeneous 
media, while the second term, which represents the distur-
bance caused by random media, blurs the image. Therefore, 
in unknown random media, the smaller the disturbance rela-
tive to a homogeneous medium, the better the expected im-
aging quality. The PDA method aims at selecting data 
points with small phase disturbance for imaging, to improve 
the overall imaging quality. Since we use normalized data 
for imaging, only phase information is considered in the 
PDA method. 
      Let C  denote a set of array data indices ),( mn , of 
which the phase difference between ),,,(~

0 mstnG rrr  and 
),,,(~

mstnG rrr  is not greater than a certain value d ,
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dmstnmstn GGArgmnC ),,,(~/),,,(~),( 0 rrrrrr ,  (9) 

where d0 . An image synthesized from C  is given 
as

,( )

* ),(),(exp),(~),(
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snmmnd jPI rrrrrr .   (10) 

Since the target position tr  is unknown, the Green’s func-
tion ),,,(~

0 mstnG rrr  used to determine C  in (9) cannot 
be computed directly and must be estimated from the meas-
ured data. Considering that the phase  of an electromag-
netic wave in homogeneous media is 0cr  with the 
angular frequency  and the travel distance r , we have 

0crr , where 0c  is the wave speed. 
Therefore, the phase of the Green’s function 

),,,(~
0 mstnG rrr  in homogeneous media can be interpo-

lated approximately by the phases of the four neighbor data 
points,  
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Substituting (11) into (9), we have  
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where a larger d  suggests more data points in the set C
and less coherence between these data points; d  gives a 
measure of coherence of the data points. Particularly, when 

d , all measured data will be used for imaging, and the 
algorithm reduces to Kirchhoff migration [5]. The parameter 

d  is determined adaptively by minimizing the same objec-
tive function as applied in CINT and N-CINT, specifically 
(2). The PDA method accelerates the optimizing process 
vis-à-vis N-CINT by reducing the optimization space from 
2D to 1D, saving significant computation time.  

4. EXPERIMENTS  

4.1. Experiment setup  

The methods outlined in Secs. 2 and 3 are examined based 
on electromagnetic scattering measurements. For simplicity, 
a quasi-two-dimensional environment is considered. We 
constitute a highly scattering random media in a 1.2 1.2 m2

domain by employing 800 low-loss dielectric rods, as 
shown in Fig. 1. The rods are of 1.25 cm diameter, 0.6 m 
length, and with approximate dielectric constant 5.2r .
The rods are distributed in a random manner with average 
inter-rod spacing between rod axes of 6 cm.  
      A linear N-element ( 13N ) sensor array over the 0.5-
10.5 GHz band is placed to the left of the random media 
(see Fig. 1), with inter-element spacing 0.3  cm. The 
middle (7th) element also works as a transmitter. The ele-
ments of the array are identical Vivaldi antennas [6], with 

the electric fields vertically polarized (electric fields parallel 
to the rod axes). The antennas are placed at a height that 
bisects the midpoint of the rods, and the measurements are 
approximately two-dimensional.  
      A dielectric target of 0.6 m length, 3.2cm diameter and 
dielectric constant 0.2r  is placed in the random media. 
The measurements are performed with a vector network 
analyzer (HP8720C). Change detection is executed to ex-
tract the scattered field of the target. Specifically, it is as-
sumed that scattering data are first obtained in the absence
of any targets. A second measurement is then performed 
with the same rod media, but now with the addition of a 
target. The data with which imaging is performed is based 
on the difference between these two signals.  
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Fig. 1. Top view of measurement setup. The box represents the 
region for which imaging is performed.

4.2. Experiment results  

A dielectric cylindrical target situated in the random media 
is considered in our experiments. We examine an 80×80 
cm2 imaging domain which covers the target location and 
this location is randomly picked for general consideration. 
Fig. 2(a) shows the time domain data measured by the sen-
sor array used in CINT imaging algorithm, and Fig. 2(b) 
draws the normalized data in N-CINT algorithm as a com-
parison. We observe that the wavefront of the scattered field 
in Fig. 2(a) is immersed by clutter but is boosted by nor-
malization in Fig. 2(b), which results in an improved imag-
ing result. The corresponding imaging results using CINT 
and N-CINT algorithms are presented with 10dB dynamic 
range in Fig. 3(a) and 3(b) respectively, where the white 
circle represents the target location and the resolution of the 
images is 2cm/pixel. The results show that the target is well 
imaged with N-CINT imaging, but poorly with CINT due to 
the immersed wavefront as shown in Fig. 2(a). Fig. 4(a) 
shows the curve of the PDA objective function in (13) with 
respect to the parameter d , which is roughly convex. We 
note that a large value of objective function corresponds to 
either a small d , which results in an over smoothing image, 
or a large d , which results in an over blurred image. An 
optimal d  is adaptively chosen to minimize the objective 
function. The corresponding imaging result with this opti-
mal d  is shown in Fig. 4(b), where a tight focus at the 
target position is observed. To perform a quantitative analy-
sis of the imaging quality, a square box is defined corre-

I  535



sponding to a contiguous 33  pixel (or 6 cm ×6 cm) in the 
image space. The energy within the box is computed when 
it is centered over the target ( cE ), as well as an average 
when outside the target region( oE ), and the ratio oc EE is
15.5dB, 12.2dB, and 9.5dB for PDA, N-CINT and CINT, 
respectively. Furthermore, the corresponding optimal objec-
tive function values for the three algorithms are 127.2, 
169.3, and 228.1 respectively; and the smaller objective 
function value indicates better imaging quality. In summary, 
the PDA yields the best imaging quality among the three 
algorithms. In addition, the PDA algorithm is computation-
ally more efficient than CINT/N-CINT. It requires roughly 
4.5 minutes of CPU in MatlabTM on a Pentium IV PC with 
1.73GHz CPU for the PDA algorithm to synthesize a 
41 41-pixel image, versus 1 hour for CINT/N-CINT. The 
performance with noisy data is examined by adding random 
white Gaussian noise to the measured data. The signal-to-
noise ratio (SNR) is computed by normalizing the measured 
data energy with the variance of the Gaussian noise added. 
An example result, for which the SNR is 0dB, is shown in 
Fig. 5(a), (b), and (c) for CINT, N-CINT, and PDA. The 
image energy ratio defined above at different SNR levels is 
plotted in Fig. 5(d) for comparison. We note that PDA out-
performs N-CINT and CINT at high SNR, but fails at low 
SNR. 

5. CONCLUSIONS 

We report two new methods for imaging a target in an un-
known random medium using a wideband array. We first 
develop the normalized coherent interferometric imaging 
algorithm (N-CINT) by normalizing the measured data to 
improve imaging performance. Secondly, a phase difference 
analysis method (PDA) is introduced to exploit the coher-
ence characteristics of real data by measuring phase differ-
ence. Both methods yield better imaging performance in 
practice than CINT when the signal-to-noise ratio is high, 
while PDA improves the computational speed.  
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(a) Measured data               (b) Normalized data
Fig. 2. Measured array data and normalized array data 
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 (a) CINT imaging, O=228.1      (b) N-CINT imaging, O=169.3
Fig. 3. Imaging results using data shown in Fig. 2. The minimum 
of the functional (2) is given for each image. 
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Fig. 4. PDA results in adaptive imaging process
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