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ABSTRACT

Most detection algorithms for hyperspectral imaging applica-
tions assume a target with a perfectly known spectral signature.
In practice, the target signature is either imperfectly measured
(target mismatch) and/or it exhibits spectral variability. The
objective of this paper is to introduce a robust matched lter
that takes the uncertainty and/or variability of target signa-
tures into account. It is shown that, if we describe this uncer-
tainty with an ellipsoid in the spectral space, we can design a
matched lter that provides a response of the same magnitude
for all spectra within this ellipsoid. Thus, by changing the
size of this ellipsoid, we can control the “spectral selectivity”
of the matched lter. The ability of the robust matched lter
to deal effectively with target mismatch and spectral variabil-
ity is demonstrated with hyperspectral imaging data from the
HYDICE sensor.

Index Terms— Infrared spectroscopy, multidimensional
signal detection, array signal processing, adaptive signal de-
tection

1. INTRODUCTION

One of the fundamental challenges for a hyperspectral imag-
ing surveillance system is the detection of subpixel targets in
background clutter [1, 2]. The background surrounding the
target, which acts as interference, provides the major obstacle
to successful detection. Most hyperspectral target detection
algorithms are derived using the following assumptions

1. The target is characterized by a spectral signature with
known shape

2. The background spectrum follows a multivariate nor-
mal distributionwith knownmeanvector and covariance
matrix
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Fig. 1. Pictorial illustration of additive and replacement sub-
pixel target models for hyperspectral imaging data.

3. For subpixel targets the background acts as an additive
interference.

The additive and replacement subpixel target models are illus-
trated in Figure 1. In hyperspectral imaging data, the target re-
places the background andwe have a replacementmodel; how-
ever, for mathematical tractability we use an additive model
[2].
The most widely used algorithm for hyperspectral target

detection is the matched lter. The matched lter is a lin-
ear processor whose weights can be obtained using different
optimality criteria. Indeed, for a target with known spectral
signature in the presence of additive zero mean normal in-
terference with known covariance matrix, the likelihood ratio
processor, the maximum signal-to-noise-plus-interference ra-
tio lter, and the minimum variance linear signal estimator
have identical weights. Another criterion of optimality, which
we shall explore in this work, is that the matched lter min-
imizes the output noise-plus-interference variance subject to
the constraint that the response to the target is equal to one.
This implies that the matched lter has maximum response in
the direction of the target in the spectral space and the smaller
possible response in any other direction. Unfortunately, in
practical applications, the target signature is not accurately
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measured or the target object exhibits intrinsic spectral vari-
ability. In both cases, there is a performance degradation that
increaseswith themeasurement error or the spectral variability
of the target signature. In practice, these assumptions are vio-
lated to various degrees, leading to suboptimum performance.
Furthermore, in most practical applications, the background
mean and covariance are estimated from the available spectral
observations. The quality of these estimates depend on the
available number of pixels, their spectral homogeneity, and
whether there are contaminated by target pixels.

2. THE OPTIMUMMATCHED FILTER

The spectral measurements obtained by aK-band hyperspec-
tral imaging sensor can be arranged in vector form as

x =
[
x1 x2 . . . xK

]T (1)

where T denotes matrix transpose. Let v be aK × 1 random
vector from a normal distribution with meanμ and covariance
matrix Σ representing the background clutter. Finally, let s0

be a K × 1 vector representing the spectral signature of the
target of interest. To simplify notation, we assume that μ

is removed from all spectra, that is, we deal with zero mean
clutter and a “clutter-centered” target signature.
The optimum linear matched lter [3]

y = hT x (2)

can be determined by minimizing the output clutter power
Var(y2) = hT

Σh subject to a unity gain constraint in the
direction of the target spectral signature

min
h

hT
Σh subject to hT s0 = 1 (3)

The solution to (3) is given by

h =
Σ
−1s0

sT
0
Σ−1s0

(4)

which is the formula for the widely used matched lter.
In the array processing area, where the data and lter vec-

tors are complex, thematched lter (4) is knownas the standard
Capon beamformer (SCB) [4].
In practice, the clutter covariance matrix Σ and the tar-

get signature s0 have to be estimated from the available data.
It turns out that the matched lter (4) is sensitive to signa-
ture errors and the quality of the clutter covariance matrix.
Therefore, the development of matched lters that are robust
to signature and clutter covariance errors is highly desirable.
This problem has been traditionally dealt with using a diagonal
loading approach or an eigenspace-based approach. However,
in both case the selection of diagonal loading or the subspace
dimension is ad-hoc [4].
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Fig. 2. Illustration of robust matched lter design principle
using two spectral bands.

3. THE ROBUST MATCHED FILTER

In this section, we shall use the theory of robust Capon beam-
former (RCB) [5] to develop a robust matched lter that takes
measurement errors and the spectral variability of hyperspec-
tral target signatures into consideration. The robust matched
lter (RMF) addresses robustness to target signature errors by
introducing an uncertainty region constraint into the optimiza-
tion process. To this end, assume that the only knowledge we
have about the signature s is that it belongs to an uncertainty
ellipsoid

(s− s0)
T C−1(s− s0) ≤ 1 (5)

where the vector s0 and the positive de nite matrix C are
given. In most hyperspectral target detection applications, it
is dif cult to get suf cient data to reliably estimate the full
matrix C. Therefore, we usually set C = εI , so that (5)
becomes

||s− s0||
2 ≤ ε (6)

where ε is a positive number. These ideas are illustrated in
Figure 2. It has been shown in [5] that theRMFcan be obtained
as the solution to the following optimization problem

min
s

sT
Σ
−1s subject to ||s− s0||

2 ≤ ε (7)

It turns out that the solution of (7) occurs on the boundary of the
constraint set; therefore, we can reformulate (7) as a quadratic
optimization problem with a quadratic equality constraint

min
s

sT
Σ
−1s subject to ||s− s0||

2 = ε (8)

This problem can be ef ciently solved using the method of
Lagrange multipliers [6]. The solution involves an estimated
target signature

ŝ = β(Σ−1 + βI)−1s0 (9)
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which is subsequently used to determine the RMF by

hβ =
Σ
−1ŝ

ŝT Σ−1ŝ
(10)

The Lagrange multiplier β ≥ 0 can be obtained by solving the
nonlinear equation

sT
0
(I + βΣ)−2s0 =

L∑

k=1

|s̃k|
2

(1 + βλk)2
= ε (11)

where λk and s̃k are obtained from the eigen-decomposition

Σ = QΛQT =
K∑

k=1

λkqkqT
k (12)

and the orthogonal transformation

s̃ = QT s0 (13)

The solution of (11) can be easily done using some nonlinear
optimization algorithm, for example, Newton’s method.
Finally, we note that the RMF (10) can be expressed in

diagonal loading form as follows

hβ =
(Σ + β−1I)−1s0

sT
0
(Σ + β−1I)−1Σ(Σ + β−1I)−1s0

(14)

where β−1 is the loading factor [5] is computed from (11).
Figure 3 illustrates the validity of the optimization ap-

proach leading to the RMF.We note that the RMF is obtained
as a standard MF for a modi ed target signature. As expected
the “assumed” target signature speci es the center of the un-
certainty region, whereas the modi ed signature “touches” the
boundary of the uncertainty region.

4. EXPERIMENTAL INVESTIGATION

To illustrate the validity of the RMF approach, we use airborne
hyperspectral imagery data collected by theHYDICE sensor at
the U.S. Army Aberdeen Proving Grounds, Maryland, on 24
August 1995. HYDICE collects calibrated (post-processed)
spectral radiance data in 210 wavelengths spanning 0.4 to 2.5
μm in nominally 10-nm wide bands. After removing the at-
mospheric opaque bands, we end up with 155 usable spectral
bands. Figure 4 shows an image of the ground surface and the
available target signatures obtained by ground measurements.
The target signature s0 is determined by the mean of the target
spectra shown in Figure 4. Clearly, due to environmental and
target variability there is a mismatch between the spectra of
the in-scene target pixels and the spectral signature used by
the matched lter. Figure 5 shows the detection statistics
in the neighborhood of the four target objects for a standard
MF and a RMF with ε = 0.01. We note that the responses of
the two lters are almost identical. Using smaller values for
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Fig. 3. Illustration of robust matched lter when there is a
target signature mismatch. The algorithm uses the available
signature specifying the center of the uncertainty region, to
produce a “robust” signature that is subsequently used to de-
termine the RMF coef cients.
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Fig. 4. Color image representing the hyperspectral data from
the HYDICE sensor data cube and a plot of the available spec-
tral signatures for the target of interest. The red curve repre-
sents the mean target signature.

ε results to identical detection statistics. In Figure 6, where
we have increased the uncertainty to ε = 0.1, we note that
the RMF “picks-up” more target pixels around the third tar-
get object. This illustrates the trade-off between “selectivity”
(small ε) and “collectivity” (large ε) of the algorithm. Clearly,
a “less selective” algorithm may “pick-up” more targets and
false alarms. Figure 7 shows the signature used by the MF
and the “robust” signature created by the RMF. Clearly, the
robust signature ŝ can be used to “robustify” other detection
algorithms, like ACE, GLRT, and AMF [2]. Due to the high
dimensionality of hyperspectral imaging data, covariance reg-
ularization is another practical necessity, which can be mean-
ingfully addressed using the robust matched lter approach.
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Fig. 5. Detection statistics of a standard MF and a RMF with
small target uncertainty.

5. SUMMARY

Classical matched lter is sensitive to target signature miss-
match and background covariance invertibility. Covariance
matrix regularization, through diagonal loading, provides an
ad-hoc method to address both problems [4]. In this paper,
we have described a robust matched ltering approach that
relates systematically target signature uncertainty to covari-
ance matrix regularization and provides the tools to (a) study
robustness of target detection algorithms and (b) develop ro-
bust and effective detection algorithms for targetswith spectral
variability or uncertainty. This technique ia particularly useful
in hyperspectral imaging applications where target variability
can be bounded by angular and sensor noise considerations.
More experimental results will be presented at the conference.
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large target uncertainty.
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Fig. 7. The RMF algorithm modi es the target signature to
produce a new signature that is used to generate the RMF
coef cient vector.
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