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ABSTRACT

Wyner-Ziv coding has recently emerged as an alternative to conven-
tional DPCM coding for compression of sources with memory, partic-
ularly in video compression. This paper studies the operational rate-
distortion performance of Wyner-Ziv coding, using uniform scalar
quantization followed by perfect Slepian-Wolf coding, for compres-
sion of a Laplace-Markov source. The performance gap of this tech-
nique relative to DPCM coding is characterized through derived rate-
distortion expressions and numerical simulations.

Index Terms— Quantization, source coding, Wyner-Ziv coding,
differential pulse code modulation, Laplace-Markov source

1. INTRODUCTION

Differential Pulse Code Modulation (DPCM) is a well-known source
coding technique used for compression of sources with memory. It
is based on the simple idea of using previously encoded symbols as
side-information available at both encoder and decoder. This side-
information is used to differentially encode the current-source sym-
bol. In practical applications DPCM is often used in conjunction with
scalar quantization, which provides good compression efficiency at
low computational cost.

Consider a discrete-time stationary source {Xp }nez with joint
densities fx,,...,x,(Z1,...,Zn) for n € Z. An infinite-level scalar
quantizer is defined by a countably infinite set of thresholds 7 =
{ti}icz, acountably infinite set of reconstruction levels R = {y; }:icz,
an integer-valued quantization function Q(x) = ¢ Vx € [t;, ti+1] and
a real-valued reconstruction function R(z) = y; Vo € [i,Zit1]-
A uniform scalar quantizer is an infinite-level scalar quantizer with
t; —ti—1 = A for a constant A > 0, for all ¢ € Z. Denoting the de-
coder reconstruction of symbol X, as X, a typical DPCM encoder
communicates to the decoder’

T 2 Q(Xn — E[Xn| X0 1,..., Xn_n]) (1

where E[-] denotes the expectation operator, and {)? [T B )?n_h}
is the side-information. The corresponding DPCM decoder recon-
structs symbol X, as

X = E[Xn|Tn, Xn-1,- s Xn—s] )
Assuming perfect entropy coding, the performance of DPCM can be
characterized by the following rate and mean-squared distortion

N
. 1
Rppcn = IJPMN;H(TH)
L X
. SN2
Dppcm = A}Enoo N ;E[(Xn - X5)7]

'We assume the commonly used mean-squared error metric as the metric
of interest, throughout this paper.
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where H (-) is the entropy function.

A popular (and for us, motivating) application of DPCM is video
coding—current video-coding standards such as MPEG-* typically
employ DPCM coding which uses uniform-scalar quantizers with dead-
zones, one or two previous video frames as side-information, and with
E[] in (1) approximated using motion estimation.

WZ Encoder
Xn | | Quantizer Slepian-Wolf
: Q code Csw
A
Xn MMSE Slepian-Wolf
Reconstruct Decoder

WZ Decoder

Fig. 1. WZ compression for source with memory.

In recent years there has been much interest in the use of Wyner-
Ziv (WZ) coding as an alternative to DPCM in video compression ap-
plications. WZ coding [1] is lossy source coding with side-information
assumed present solely at the decoder. Figure 1 shows a typical WZ
coding system for compression of a source with memory. The WZ
encoder communicates, at time n,

2 A Csw(Q(Xn)) 3)

where C'sw denotes a Slepian-Wolf (SW) code [2, 3]. The decoder
decodes Q(X,) using 7% and the side-information {X,_;}";,

and then reconstructs the source symbol as

~

R = BIXalQ(X0), Kuctsee s K]

Assuming perfect SW coding, the performance of WZ coding can be
characterized by the rate given by the Slepian-Wolf theorem [2]

N

1 ~ -
Rwz = lim — Z;H(Q(XnﬂXn_l, o Xnon) @
and the distortion
1 N
. T \2
Dwz = lim > E[(Xn — X5)?] 5

n=1

The use of WZ coding in video compression is motivated by the obser-
vation that C'sw (Q(X»)) in (3) is, typically, significantly less costly
to compute as compared to E[-] in (1). Thus, WZ coding can facilitate
low-complexity encoding [4], which is desirable in many applications.
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While the performance of Wyner-Ziv coding using scalar quantization
has been analyzed previously for memoryless sources [5], an open
question is the performance loss of the above WZ system compared to
the conventional DPCM system.

The main objective of the present paper is to analyze the compres-
sion performance of uniform scalar quantization based WZ coding for
compression of a source with memory. Motivated by video coding,
we are specifically concerned with the stationary, first-order Laplace-
Markov source which is well-known to be a good source model for
video (cf. [6, 7]). The source can be described as

Xn = anfl + Zn (6)

where the marginal density of X, is fx (x) = %e‘”zl, r is the real-

valued correlation coefficient, and {Z,} is an i.i.d. zero-mean, inno-
vation sequence with Z,, independent of X,,_1. As has been shown
by [8], the marginal density of Z,, is given by a weighted sum of the
density of X, and an impulse density

fz(2) :T25(z)+(1—r2)gef>“z‘ @)

In Section 2, we analyze the rate-distortion performance of WZ
coding, using uniform scalar quantization and perfect SW coding, for
a memoryless source-side information pair with channel noise with
marginal distribution f.(z). In Section 3 we extend our analysis to
the case where the source has memory—in particular we consider
compression of the Laplace-Markov source in (6) using WZ coding,
where the decoder uses Q(X,—1) as side-information. In Section 4
we compare the rate-distortion performance of WZ coding using uni-
form scalar quantization to that of DPCM coding in order to charac-
terize the performance gap between the two techniques.

2. WZ CODING OF MEMORYLESS SOURCE USING
UNIFORM SCALAR QUANTIZATION

We consider the asymmetric uniform scalar quantizer with partition
levels {t;, = — % +kA} ez, where A is the quantization interval. Let
X, Y be memoryless, stationary zero-mean Laplacian sources such
that X = rY 4 Z where Z is independent of Y and has density fz(z)
given by (7), fx(z) = %eikm and fy (y) = %e*My‘. Our aim, in
this section, is to compute the operational rate-distortion performance
of WZ coding, using the quantizer described above and perfect SW
coding, for the source X given the decoder side-information Y.

To this end, we begin by considering the operational rate-distortion
function for uniform scalar quantization of the random variable Z with
density f5 (z) = f-(z — €A) where f is as given in (7), and -i<
€< % We define pi, = f::“ fx (z)dz, and denote the rate and dis-

tortion by R and D, respectively. Then Re = — ) wez Pk log, P
and De =3, ., ::“ (yr — x)? fx (x)dx, where the reconstruction

levels {yx} which minimize distortion for a fixed rate are given by

th41
zfx (z)dx .
= ft’“pikxu, as shown in [9].

We consider three cases, namely, k < —1, k = 0, k > 1. From
the definitions of py and yx we have, for k < —1

Yk

e—AA(eJr%)e)\kA(e)\A —1)

2

(1%

Pk

1 1 s

Yk
For k > 1, we have

e)\A(e+%)ef)\kA(1 _ e,\A)

2
e A

T_oa ®

Pk (1 77’2)

1 1
Yk A(k—a)-‘-x—A

For k = 0, we have

2
(1—r7) 2 — e A | A )]

po = 1+ 9
“Ale+d)a Ae—3)A
v = é_’_(l_rg)e 2 (AA +1)e 3 (10)
Do 2Apo

The distortion is given by D, = (1 — rz)% + A% -3 yipi.

Denoting 8 £ e *2, we compute A; £ >kt yipr and Az 2

> k<1 Yipi from (8) and (9)

B N 0In%0  1—6(1—1nh)>
A = (A=) 5+ g ra—
ote 01n20
_ _ 2
As = A=) )]

From (10), As £ y2po can be computed as

[eA + (15_;2)(€7>\(5+%)A —(A\A + 1)e>\(e—%)A)]2
= 2 (1—2,\2) [2— e MA(eH) _ AA(e—3 ]

Az

The quantizer distortion is, then, given by

Dsz(l—r2)3+A22—A1—A2—A3

o (1n

To compute the quantizer rate, we compute J; = — k<_1 Pk

log, prand Js = — 37, ) pi log, pi.

g2 H(0) 1
_ AN el SO -
Joo= (1-79) 5 (1—1—1_0 (e+2)10g29)
e+1
~logy(1 - ) L2
2
1
PPN D (() 1
Js = (1—=r7)] 3 (1+71_0+(6+2)010g29

1
g3

+(1 = 0)(logy(1 — 8) — 1)) — log,(1 — %) )

]

From (10), J2 £ po log, po can be computed as

2
2= e A aerh sy,

2
(1 —2r )[2 e e+ _ e/\A(e—%)])

log, (r® +
The quantizer rate can be computed as

Re=Ji+J2+ J3 (12)

We are now in a position to derive the operational rate-distortion
performance for WZ coding, using uniform scalar quantization fol-
lowed by perfect SW coding, of the desired source. Since the source
is memoryless and stationary, we see from (4) that the WZ rate is given
by

Rwz = HQMY) = [~ HQUOY =pfrdy (13

For a fixed value of Y = y the conditional distribution of X is given
by f5 (-) withe = ry mod & Rurther, note that e is distributed as

_1 (E+oga, 1 1
fe(f)—réfY( " ) 5S€<y

(14)
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Thus (13) reduces to

Rwz = / Refe(e (15)

kezZ

Similarly the WZ coding distortion can be derived from (5), (14) as

Dwz=3" / D.f.(e

kEZ 7_

(16)

Equations (15) and (16) can be evaluated numerically to yield the op-
erational rate-distortion function of WZ coding.

WZC for Memoryless Source-Side Information

28} —>— R-D bound, r=0.8
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Fig. 2. Comparison of WZ coding to rate-distortion bounds obtained
when encoder knows side-information. The figure plots —10log,, D
versus R for a unit-variance source with r = 0.2, 0.8.

Figure 2 compares the performance of the described WZ coding
scheme to the rate-distortion bounds obtained by considering the case
where the side-information is known at the encoder, for a unit-variance
source with » = 0.2, 0.8. The bounds can be evaluated by analyzing
the theoretical rate-distortion performance, and the operational rate-
distortion performance of mid-tread uniform scalar quantization, for
the random variable with density fz(z), respectively. In Figure 2,
the theoretical rate-distortion curves computed by the Blahut-Arimoto
algorithm [10] are shown in the dotted lines. The operational rate-
distortion curves can be shown to have the following parametric form,
with0 <60 <1

Re = —(1—(1—r)V0)logy(1— (1 —7r°)V0)
+(1—r)Vo[L — 1°g29710g2(179)7%]
—(1=7)V0log,(1 —?)

Do = S5 vaa- 5+ )

As shown by the figure the performance loss of WZ coding, compared
to the case where the encoder utilizes the side-information during en-
coding, is very small at very low rates and at high rates. At intermedi-
ate rates, there is a non-negligible performance loss for high values of
the correlation coefficient r, with a maximum loss of about 1 dB for
r = 0.8. For 7 = 0.2, on the other hand, the WZ coding performance
is nearly coincident with the uniform scalar quantization bound. In the
next section we will consider the case where the source has memory,
and where the side-information is derived from previously encoded
source samples. Our aim will be to characterize the performance loss
compared to DPCM coding which utilizes side-information at the en-
coder.

3. WZ CODING OF LAPLACE-MARKOV SOURCE

We consider the Laplace-Markov source described by (6), and the WZ
coding system described by Figure 1. The scalar quantizer used is an
asymmetric uniform scalar quantizer with a deadzone, i.e. the parti-
tion levels of the quantizer are

tr, = Ak+e k>0

ty = A(k‘Fl)*E k<O

Further, we will set e = A.

For simplicity of illustration we consider the case where the de-
coder side-information consists of the quantized value of the previous
source symbol, i.e. Q(Xn_l) at time n. It is easy to show that the
conditional density

fi(x)

is independent of n. Denote the conditional bin probabilities and bin
reconstructions as p, = f::‘“ fi(z)dx and yi = f::“ x fi(x)dx
respectively. The stationarity of the conditional density in (17) implies
that (4) and (5) can be evaluated as

= anIQ(Xn—l):i(x) = an‘Xn,—le[tivt'H»l)(x) a7

it+1 )\ e
Rwz = —Z/ A ldm ZpklogQPk (18)
icz Yt kEZ
41 )\ _
Dwz = Z / Az ‘dm Z/ k—m)zdm
iez Yt kEZ "

The operational rate-distortion function in (18) can be derived by
computing f;(z). From (6), we get that

f(znlTn-1) = r25(:rn —rTn—1) + (1 — TQ)%esznfm"‘l

which can be used to evaluate f;(x) as

d S don [5F f(@alwn1) fx (Tn-1)dn 1

M) = 4 i (19)
( ) da ftt;’+1 fX(xn—1)d:cn_1
Thus, for example, for i = —1 we get the following expression for
fi(z)
A a0 (r+1) +20407"(r— 1)
4 0—1 o< —rA
A0 (r = 1)(e* + &) + 206
4 —rA
4 61 € [-rA,0)
X7 (r = 1) (e + ) + 2067
4 0—1 € [0,rA)
(DI

where 0 £ ¢ 2,

Equation (19) can be used to derive the operational rate-distortion
function by numerical evaluation of (18). For the case where the
Laplace-Markov process has low correlation and low-rate, an analyti-
cal approximation can be made by discarding quantizer bins far from
the mean of the source. The derived rate-distortion function is suffi-
ciently simple to allow presentation here, in (20) and (21)

D = puy—2A (20)

where

—2r%1n6 — r*(In )% — 2 + 20
A2(0—-1)

=
)
I
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1

2
+(In0)*>(1 — 0+ 6%))(r +20"T" —1 — (r + 1)6°")
and
R=—Plog, P+ J1 + J2 2D
where
N 1 r—1 —r—1 _ _
P = 72(0_1)[9 (r+1)+6 (1—7)—4+ 20|
-1 (Kilogye)(0~' —2)
Y Kilog, K1 — 2 1
g [ Rt - 1) nf
—0 (K2In6)0
Jo 2 HKQ 10g2 Ko + Wlogge

with K1 £ —1[0"(r+1)—20+(1—7)0 "Jand Ko £ 2[07>7"(r —

1) 4207 — (1 +r)0"2.
4. WZ CODING AND DPCM CODING
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Fig. 3. Comparison of rate-distortion (R-D) curves for uniform scalar
quantization and perfect SW coding with DPCM for compression of
unit-variance Laplace-Markov source (r = 0.2). Plotted are: (1)
DPCM R-D curve, (2) WZ coding R-D curve obtained by simulation,
and (3) Low-correlation R-D curve derived in Section 3. The three
curves are nearly coincident.

We consider a unit-variance Laplace-Markov source withr = 0.2
(low correlation) and » = 0.8 (high correlation). In this section we
compare the operational rate-distortion performance of WZ coding
with that of DPCM coding with the aim of characterizing the per-
formance gap. The DPCM coder uses pXn_11t0 approximate E[-] in
(1). Simulations of WZ coding and DPCM are performed by encoding
blocks of 10° — 108 source vectors simulated over 50 time-steps.

Figure 3 compares the simulated operational performance of WZ
coding with that of DPCM coding for » = 0.2. The WZ decoder
uses Q()A(n,1) as side-information at time-step n. Also shown is the
low-correlation rate-distortion function given by (20) and (21). As the
figure shows, the derived rate-distortion function is a very good fit for
the operational rate-distortion function obtained through simulation
upto R = 2.5 bits. Further, the figure shows that there is a negligible
performance gap between WZ coding and DPCM in this case, similar
to the memoryless case.

Figure 4 compares the simulated operational performance of WZ
coding with that of DPCM coding for the high correlation case where
r = 0.8. There are two WZ coders considered,; the first uses Q ()? n—1)
as decoder side-information, while the second improves upon this by
using )?n_l as decoder side-information. As the figure shows, there

WZC, DPCM for Laplace-Markov Source, r=0.8

24/[ ——DPCM
—e—WZC, MMSE s.i.
—WZC,Q(X_,)si.

o 18

—10Iog‘0

SNR=

N Ao

0 025 05 075 1 125 15 175 2
Rate (bits per symbol)

Fig. 4. Comparison of rate-distortion (R-D) curves for uniform
scalar quantization and perfect SW coding with DPCM for compres-
sion of unit-variance Laplace-Markov source (r = 0.8). Plotted
are: (1) DPCM R-D curve, (2) WZ coding R-D curve with MMSE
side-information )A(n_l, and (3) WZ coding R-D curve with side-
information Q(X,—1).

is a significant gap between DPCM coding and WZ coding at interme-
diate rates. As expected, the coder which uses )A(n_l performs better
than the other WZ coder, but it nevertheless loses upto 2 dB compared
to DPCM at rates around 1-2 bits per symbol. This indicates that WZ
coding may require a larger decoder history for efficiently compress-
ing low-innovation Laplace-Markov sources at such rates, than just
the previous symbol, unlike typical current practice.
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