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ABSTRACT

Wyner-Ziv coding has recently emerged as an alternative to conven-
tional DPCM coding for compression of sources with memory, partic-
ularly in video compression. This paper studies the operational rate-
distortion performance of Wyner-Ziv coding, using uniform scalar
quantization followed by perfect Slepian-Wolf coding, for compres-
sion of a Laplace-Markov source. The performance gap of this tech-
nique relative to DPCM coding is characterized through derived rate-
distortion expressions and numerical simulations.

Index Terms— Quantization, source coding, Wyner-Ziv coding,
differential pulse code modulation, Laplace-Markov source

1. INTRODUCTION

Differential Pulse Code Modulation (DPCM) is a well-known source
coding technique used for compression of sources with memory. It
is based on the simple idea of using previously encoded symbols as
side-information available at both encoder and decoder. This side-
information is used to differentially encode the current-source sym-
bol. In practical applications DPCM is often used in conjunction with
scalar quantization, which provides good compression ef ciency at
low computational cost.

Consider a discrete-time stationary source {Xn}n∈Z with joint
densities fX1,...,Xn(x1, . . . , xn) for n ∈ Z. An in nite-level scalar
quantizer is de ned by a countably in nite set of thresholds T =
{ti}i∈Z, a countably in nite set of reconstruction levelsR = {yi}i∈Z,
an integer-valued quantization functionQ(x) = i ∀x ∈ [ti, ti+1] and
a real-valued reconstruction function R(x) = yi ∀x ∈ [xi, xi+1].
A uniform scalar quantizer is an in nite-level scalar quantizer with
ti − ti−1 = Δ for a constant Δ > 0, for all i ∈ Z. Denoting the de-
coder reconstruction of symbol Xn as �Xn, a typical DPCM encoder
communicates to the decoder1

τn � Q(Xn − E[Xn| �Xn−1, . . . , �Xn−h]) (1)

whereE[·] denotes the expectation operator, and { �Xn−1, . . . , �Xn−h}
is the side-information. The corresponding DPCM decoder recon-
structs symbol Xn as

�Xn = E[Xn|τn, �Xn−1, . . . , �Xn−h] (2)

Assuming perfect entropy coding, the performance of DPCM can be
characterized by the following rate and mean-squared distortion

RDPCM = lim
N→∞

1

N

N�
n=1

H(τn)

DDPCM = lim
N→∞

1

N

N�
n=1

E[(Xn − �Xn)2]
1We assume the commonly used mean-squared error metric as the metric

of interest, throughout this paper.

whereH(·) is the entropy function.
A popular (and for us, motivating) application of DPCM is video

coding—current video-coding standards such as MPEG-* typically
employ DPCM coding which uses uniform-scalar quantizers with dead-
zones, one or two previous video frames as side-information, and with
E[·] in (1) approximated using motion estimation.
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Fig. 1. WZ compression for source with memory.

In recent years there has been much interest in the use of Wyner-
Ziv (WZ) coding as an alternative to DPCM in video compression ap-
plications. WZ coding [1] is lossy source coding with side-information
assumed present solely at the decoder. Figure 1 shows a typical WZ
coding system for compression of a source with memory. The WZ
encoder communicates, at time n,

τ
WZ
n � CSW (Q(Xn)) (3)

where CSW denotes a Slepian-Wolf (SW) code [2, 3]. The decoder
decodes Q(Xn) using τWZ

n and the side-information { �Xn−i}hi=1,
and then reconstructs the source symbol as

�Xn = E[Xn|Q(Xn), �Xn−1, . . . , �Xn−h]
Assuming perfect SW coding, the performance of WZ coding can be
characterized by the rate given by the Slepian-Wolf theorem [2]

RWZ = lim
N→∞

1

N

N�
n=1

H(Q(Xn)| �Xn−1, . . . , �Xn−h) (4)

and the distortion

DWZ = lim
N→∞

1

N

N�
n=1

E[(Xn − �Xn)2] (5)

The use of WZ coding in video compression is motivated by the obser-
vation that CSW (Q(Xn)) in (3) is, typically, signi cantly less costly
to compute as compared toE[·] in (1). Thus, WZ coding can facilitate
low-complexity encoding [4], which is desirable in many applications.
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While the performance of Wyner-Ziv coding using scalar quantization
has been analyzed previously for memoryless sources [5], an open
question is the performance loss of the above WZ system compared to
the conventional DPCM system.

The main objective of the present paper is to analyze the compres-
sion performance of uniform scalar quantization based WZ coding for
compression of a source with memory. Motivated by video coding,
we are speci cally concerned with the stationary, rst-order Laplace-
Markov source which is well-known to be a good source model for
video (cf. [6, 7]). The source can be described as

Xn = rXn−1 + Zn (6)

where the marginal density of Xn is fX(x) = λ
2
e−λ|x|, r is the real-

valued correlation coef cient, and {Zn} is an i.i.d. zero-mean, inno-
vation sequence with Zn independent of Xn−1. As has been shown
by [8], the marginal density of Zn is given by a weighted sum of the
density ofXn and an impulse density

fZ(z) = r2δ(z) + (1− r2)λ
2
e
−λ|z| (7)

In Section 2, we analyze the rate-distortion performance of WZ
coding, using uniform scalar quantization and perfect SW coding, for
a memoryless source-side information pair with channel noise with
marginal distribution fz(z). In Section 3 we extend our analysis to
the case where the source has memory—in particular we consider
compression of the Laplace-Markov source in (6) using WZ coding,
where the decoder uses Q(Xn−1) as side-information. In Section 4
we compare the rate-distortion performance of WZ coding using uni-
form scalar quantization to that of DPCM coding in order to charac-
terize the performance gap between the two techniques.

2. WZ CODING OF MEMORYLESS SOURCE USING
UNIFORM SCALAR QUANTIZATION

We consider the asymmetric uniform scalar quantizer with partition
levels {tk = −Δ

2
+kΔ}k∈Z, where Δ is the quantization interval. Let

X, Y be memoryless, stationary zero-mean Laplacian sources such
thatX = rY +Z where Z is independent of Y and has density fZ(z)

given by (7), fX(x) = λ
2
e−λ|x| and fY (y) = λ

2
e−λ|y|. Our aim, in

this section, is to compute the operational rate-distortion performance
of WZ coding, using the quantizer described above and perfect SW
coding, for the sourceX given the decoder side-information Y .

To this end, we begin by considering the operational rate-distortion
function for uniform scalar quantization of the random variable �Z with
density f �Z,ε(z) = fz(z− εΔ) where fz is as given in (7), and − 1

2
≤

ε < 1
2
. We de ne pk �

� tk+1

tk
fX(x)dx, and denote the rate and dis-

tortion by Rε and Dε respectively. Then Rε = −�
k∈Z pk log2 pk

andDε =
�

k∈Z

� tk+1

tk
(yk − x)2fX(x)dx, where the reconstruction

levels {yk} which minimize distortion for a xed rate are given by

yk =

� t
k+1
t
k

xfX(x)dx

pk
, as shown in [9].

We consider three cases, namely, k ≤ −1, k = 0, k ≥ 1. From
the de nitions of pk and yk we have, for k ≤ −1

pk = (1− r2)e
−λΔ(ε+1

2
)eλkΔ(eλΔ − 1)

2

yk = Δ(k − 1

2
) − 1

λ
+ Δ

eλΔ

eλΔ − 1
(8)

For k ≥ 1, we have

pk = (1− r2)e
λΔ(ε+1

2
)e−λkΔ(1− eλΔ)

2

yk = Δ(k − 1

2
) +

1

λ
− Δ

e−λΔ

1− e−λΔ (9)

For k = 0, we have

p0 = r
2 +

(1− r2)
2

[2 − e−λΔ(ε+ 1
2
) − eλΔ(ε− 1

2
)]

y0 =
εΔ

p0
+ (1− r2)e

−λ(ε+ 1
2
)Δ − (λΔ + 1)eλ(ε−

1
2
)Δ

2λp0
(10)

The distortion is given byDε = (1− r2) 2
λ2

+ Δ2ε2 −�
i
y2i pi.

Denoting θ � e−λΔ, we compute A1 �
�

k≥1 y
2
kpk and A3 ��

k≤−1 y
2
kpk from (8) and (9)

A1 = (1 − r2)θ
−ε− 1

2

2λ2
[1 +

θ ln2 θ

(1 − θ)2 − 1− θ(1 − ln θ)2

1− θ ]

A3 = (1 − r2)θ
ε+ 1

2

2λ2
[1 +

θ ln2 θ

(1− θ)2 ]

From (10), A2 � y20p0 can be computed as

A2 =
[εΔ + (1−r2)

2λ
(e−λ(ε+

1
2
)Δ − (λΔ + 1)eλ(ε−

1
2
)Δ)]2

r2 + (1−r2)
2

[2 − e−λΔ(ε+ 1
2
) − eλΔ(ε− 1

2
)]

The quantizer distortion is, then, given by

Dε = (1− r2) 2

λ2
+ Δ2

ε
2 − A1 − A2 − A3 (11)

To compute the quantizer rate, we compute J1 � −�
k≤−1 pk

log2 pk and J3 � −�
k≥1 pk log2 pk

J1 = (1− r2)[θ
ε+ 1

2

2
(1 +

H(θ)

1− θ − (ε+
1

2
) log2 θ)

− log2(1− r2)
θε+

1
2

2
]

J3 = (1− r2)[θ
−ε− 1

2

2
(1 +

H(θ)

1− θ + (ε+
1

2
)θ log2 θ

+(1− θ)(log2(1 − θ) − 1))− log2(1− r2)
θε−

1
2

2
]

From (10), J2 � p0 log2 p0 can be computed as

J2 = [r2 +
(1 − r2)

2
(2− e−λΔ(ε+1

2
) − eλΔ(ε− 1

2
))] ·

log2(r
2 +

(1− r2)
2

[2 − e−λΔ(ε+ 1
2
) − eλΔ(ε− 1

2
)])

The quantizer rate can be computed as

Rε = J1 + J2 + J3 (12)

We are now in a position to derive the operational rate-distortion
performance for WZ coding, using uniform scalar quantization fol-
lowed by perfect SW coding, of the desired source. Since the source
is memoryless and stationary, we see from (4) that the WZ rate is given
by

RWZ = H(Q(X)|Y ) =

� ∞

−∞

H(Q(X)|Y = y)fY (y)dy (13)

For a xed value of Y = y the conditional distribution of X is given
by f �Z,ε(·) with ε = ry mod Δ

Δ
. Further, note that ε is distributed as

fε(ε) =
1

r

�
k∈Z

fY (
(k + ε)Δ

r
) − 1

2
≤ ε ≤ 1

2
(14)
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Thus (13) reduces to

RWZ =
�
k∈Z

� 1
2

− 1
2

Rεfε(ε)dε (15)

Similarly the WZ coding distortion can be derived from (5), (14) as

DWZ =
�
k∈Z

� 1
2

− 1
2

Dεfε(ε)dε (16)

Equations (15) and (16) can be evaluated numerically to yield the op-
erational rate-distortion function of WZ coding.
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Fig. 2. Comparison of WZ coding to rate-distortion bounds obtained
when encoder knows side-information. The gure plots −10 log10D
versus R for a unit-variance source with r = 0.2, 0.8.

Figure 2 compares the performance of the described WZ coding
scheme to the rate-distortion bounds obtained by considering the case
where the side-information is known at the encoder, for a unit-variance
source with r = 0.2, 0.8. The bounds can be evaluated by analyzing
the theoretical rate-distortion performance, and the operational rate-
distortion performance of mid-tread uniform scalar quantization, for
the random variable with density fZ(z), respectively. In Figure 2,
the theoretical rate-distortion curves computed by the Blahut-Arimoto
algorithm [10] are shown in the dotted lines. The operational rate-
distortion curves can be shown to have the following parametric form,
with 0 < θ < 1

Rθ = −(1− (1 − r2)
√
θ) log2(1 − (1− r2)

√
θ)

+(1− r2)
√
θ[1 − log2 θ

2
− log2(1− θ) −

θ log2 θ

1 − θ ]

−(1− r2)
√
θ log2(1 − r2)

Dθ =
(1− r2)
λ2

[2 −
√
θ((1− ln θ

2
)2 +

θ ln2 θ

(1− θ)2 ]

As shown by the gure the performance loss of WZ coding, compared
to the case where the encoder utilizes the side-information during en-
coding, is very small at very low rates and at high rates. At intermedi-
ate rates, there is a non-negligible performance loss for high values of
the correlation coef cient r, with a maximum loss of about 1 dB for
r = 0.8. For r = 0.2, on the other hand, the WZ coding performance
is nearly coincident with the uniform scalar quantization bound. In the
next section we will consider the case where the source has memory,
and where the side-information is derived from previously encoded
source samples. Our aim will be to characterize the performance loss
compared to DPCM coding which utilizes side-information at the en-
coder.

3. WZ CODING OF LAPLACE-MARKOV SOURCE

We consider the Laplace-Markov source described by (6), and the WZ
coding system described by Figure 1. The scalar quantizer used is an
asymmetric uniform scalar quantizer with a deadzone, i.e. the parti-
tion levels of the quantizer are

tk = Δk + ε k ≥ 0

tk = Δ(k + 1) − ε k < 0

Further, we will set ε = Δ.
For simplicity of illustration we consider the case where the de-

coder side-information consists of the quantized value of the previous
source symbol, i.e. Q(Xn−1) at time n. It is easy to show that the
conditional density

fi(x) = fXn|Q(Xn−1)=i(x) = fXn|Xn−1∈[ti,ti+1)(x) (17)

is independent of n. Denote the conditional bin probabilities and bin
reconstructions as pik �

� tk+1

tk
fi(x)dx and yik �

� tk+1

tk
xfi(x)dx,

respectively. The stationarity of the conditional density in (17) implies
that (4) and (5) can be evaluated as

RWZ = −
�
i∈Z

(

� ti+1

ti

λ

2
e
−λ|x|

dx)
�
k∈Z

p
i
k log2 p

i
k (18)

DWZ =
�
i∈Z

(

� ti+1

ti

λ

2
e
−λ|x|

dx)
�
k∈Z

� tk+1

tk

fi(x)(y
i
k − x)2dx

The operational rate-distortion function in (18) can be derived by
computing fi(x). From (6), we get that

f(xn|xn−1) = r2δ(xn − rxn−1) + (1 − r2)λ
2
e
−λ|xn−rxn−1|

which can be used to evaluate fi(x) as

fi(x) =
d

dα

� α
−∞
dxk

� ti+1

ti
f(xn|xn−1)fX(xn−1)dxn−1� ti+1

ti
fX(xn−1)dxn−1

(19)

Thus, for example, for i = −1 we get the following expression for
fi(x)

λ

4
e
λα−θr(r + 1) + 2θ + θ−r(r − 1)

θ − 1
α < −rΔ

λ

4

θ−r(r − 1)(e−λα + eλα) + 2θeλα

θ − 1
α ∈ [−rΔ, 0)

λ

4

θ−r(r − 1)(e−λα + eλα) + 2θe−λα

θ − 1
α ∈ [0, rΔ)

λ

4
e
−λα−θr(r + 1) + 2θ + θ−r(r − 1)

θ − 1
α ≥ rΔ

where θ � e−λΔ.
Equation (19) can be used to derive the operational rate-distortion

function by numerical evaluation of (18). For the case where the
Laplace-Markov process has low correlation and low-rate, an analyti-
cal approximation can be made by discarding quantizer bins far from
the mean of the source. The derived rate-distortion function is suf -
ciently simple to allow presentation here, in (20) and (21)

D = μ2 − 2A (20)

where

μ2 �
−2r2 ln θ − r2(ln θ)2 − 2 + 2θ

λ2(θ − 1)
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A �
1

4λ2θr+1(θ − 1)3
[(1 − θ)2(1 + 2 ln θ)

+(ln θ)2(1− θ + θ2)](r + 2θr+1 − 1 − (r + 1)θ2r)

and
R = −P log2 P + J1 + J2 (21)

where

P �
1

2(θ − 1)
[θr−1(r + 1) + θ−r−1(1− r)− 4 + 2θ]

J1 �
−θ−1
θ − 1

K1 log2K1 − (K1 log2 e)(θ
−1 − 2)

(θ − 1)2
ln θ

J2 �
−θ
θ − 1

K2 log2K2 +
(K2 ln θ)θ

(θ − 1)2
log2 e

withK1 � − 1
4
[θr(r+1)−2θ+(1−r)θ−r] andK2 � 1

4
[θ−2−r(r−

1) + 2θ−1 − (1 + r)θr−2].

4. WZ CODING AND DPCM CODING
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Fig. 3. Comparison of rate-distortion (R-D) curves for uniform scalar
quantization and perfect SW coding with DPCM for compression of
unit-variance Laplace-Markov source (r = 0.2). Plotted are: (1)
DPCM R-D curve, (2) WZ coding R-D curve obtained by simulation,
and (3) Low-correlation R-D curve derived in Section 3. The three
curves are nearly coincident.

We consider a unit-variance Laplace-Markov source with r = 0.2
(low correlation) and r = 0.8 (high correlation). In this section we
compare the operational rate-distortion performance of WZ coding
with that of DPCM coding with the aim of characterizing the per-
formance gap. The DPCM coder uses ρX̂n−1 to approximate E[·] in
(1). Simulations of WZ coding and DPCM are performed by encoding
blocks of 105 − 106 source vectors simulated over 50 time-steps.

Figure 3 compares the simulated operational performance of WZ
coding with that of DPCM coding for r = 0.2. The WZ decoder
uses Q( �Xn−1) as side-information at time-step n. Also shown is the
low-correlation rate-distortion function given by (20) and (21). As the
gure shows, the derived rate-distortion function is a very good t for

the operational rate-distortion function obtained through simulation
upto R = 2.5 bits. Further, the gure shows that there is a negligible
performance gap between WZ coding and DPCM in this case, similar
to the memoryless case.

Figure 4 compares the simulated operational performance of WZ
coding with that of DPCM coding for the high correlation case where
r = 0.8. There are two WZ coders considered; the rst usesQ( �Xn−1)
as decoder side-information, while the second improves upon this by
using �Xn−1 as decoder side-information. As the gure shows, there
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Fig. 4. Comparison of rate-distortion (R-D) curves for uniform
scalar quantization and perfect SW coding with DPCM for compres-
sion of unit-variance Laplace-Markov source (r = 0.8). Plotted
are: (1) DPCM R-D curve, (2) WZ coding R-D curve with MMSE
side-information �Xn−1, and (3) WZ coding R-D curve with side-
information Q(Xn−1).

is a signi cant gap between DPCM coding and WZ coding at interme-
diate rates. As expected, the coder which uses �Xn−1 performs better
than the other WZ coder, but it nevertheless loses upto 2 dB compared
to DPCM at rates around 1-2 bits per symbol. This indicates that WZ
coding may require a larger decoder history for ef ciently compress-
ing low-innovation Laplace-Markov sources at such rates, than just
the previous symbol, unlike typical current practice.
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