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ABSTRACT 

A popular modality of biometrics, facial recognition is effective 
when used in controlled environments as in those situations 
where factors such as camera position, facial expression, and 
illumination effects are either completely or partially controlled 
in a beneficial way. Regulation of such factors has an immediate 
effect on the performance of facial recognition algorithms, in 
particular illumination effects which can not be controlled by 
even the most cooperative of users. In this paper we describe a 
method to address illumination effects in the biometric modality 
of face recognition using the signal processing analysis tool of 
Empirical Mode Decomposition (EMD) to decompose images 
into their intrinsic mode function that correspond to the 
dominant illumination factors. Using these illumination modes 
we reconstruct the facial image without these illumination 
distortion components to synthesize a more illumination neutral 
facial image. We then perform verification experiments using 
algorithms such as Principal Component Analysis (PCA), Fisher 
Linear Discriminant Analysis (FLDA), and Advanced 
Correlation Filters (ACF’s) to demonstrate the fundamental 
effectiveness of EMD as an illumination compensation method. 
Results are reported on the Carnegie Mellon University Pose-
Illumination-Expression (CMU PIE) database. 

Keywords: Image Processing, Image Classification, Security.

1. INTRODUCTION 
Due to its availability and relative uniqueness, facial 
recognition is becoming one of the most popular modalities 
of biometrics. Though evaluations such as the Face 
Recognition Vendor Test (FRVT) [14] and the Face 
Recognition Grand Challenge (FRGC) [15] indicate strong 
progress in the overall area of face recognition, there are 
still exist many obstacles to widespread use. 

When considering all potential areas of deployment 
for facial recognition systems, the issue of handling 
illumination-variations becomes a priority. It has been 
shown experimentally and theoretically that illumination 
variations can cause a significant degradation in 
performance of facial recognition systems [1]. Many 
potential solutions to this problem have been proposed 

varying in complexity and effectiveness [3, 4, 7]. These 
solutions are improvements to facial recognition under 
illumination-variant conditions, but are not ideal. The 
complexity and assumptions of idealities in many of these 
methods often limit their overall applicability. 

We will show the power of Empirical Mode 
Decomposition (EMD) in addressing illumination effects 
in facial recognition. Using EMD to decompose two-
dimensional facial images into their fundamental source 
signals, we can isolate the effects of illumination to one or 
more of these source signals. By reconstructing the image 
without these illumination artifact source signals, we can 
reduce the overall effect of illumination variation. As EMD 
is very algorithmic, implementation is simple while still 
being effective. Recognition results to demonstrate the 
improvement of EMD processing are reported using 
Principal Component Analysis (PCA), Fisher Linear 
Discriminant Analysis (FLDA), and Correlation Filters 
(CF’s) on the Carnegie Mellon University Pose-
Illumination-Expression (CMU PIE) database. 

2. EMPIRICAL MODE DECOMPOSITION 
EMD was pioneered [9] as a signal processing technique 
for adaptive representation of nonstationary signals as 
sums of zero-mean AM and FM components. Employed in 
multiple applications not directly related to facial 
recognition [6, 10], EMD has been to shown to be an
effective tool for analysis and manipulation of signals. 
However, EMD’s definition as an algorithm as opposed to 
theory lends itself to varying implementations ranging in 
complexity and accuracy. 

A general overview of EMD and its implementation is 
presented in [6], but we will briefly summarize EMD here. 
EMD aims to capture information about local trends in the 
signal data by measuring and quantizing oscillations. Such 
oscillations can be quantized by a local high frequency or 
local detail and correspondingly a local low frequency or 
local trend. The source signal being composed of these 
local details and trends can be iteratively reduced to 
characteristic signals. The following algorithm defines this 
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procedure and outlines most EMD implementations. Given 
a source signal x(t): 
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An IMF satisfies two conditions [9].  First, the number 
of extrema and the number of zero-crossings must be equal 
or at most differ by one. Second, at any point, the mean 
values of the envelopes defined by the local maxima and 
the the local minima respectively must equal zero. The 
first four steps shown above are collectively referred to as 
the “sifting process” and are the most computationally 
expensive and error prone portion of the algorithm due to 
identification of extrema and subsequent interpolation. The 
primary power of EMD is that once these IMF’s have been 
found, we can easily go back and forth from them to the 
original data. By simply summing all the IMF’s together 
we will recover the original data [6, 10] accommodating 
for minor variations due to the interpolation present in the 
algorithm. EMD also allows us to selectively reconstruct 
the data, ignoring the IMF’s whose contributions to the 
data are undesirable. For our application, such 
contributions are those of illumination effects. If we can 
use EMD to decompose our original facial images into 
their IMF’s, there is a strong likelihood that the effects of 
illumination will be isolated to one or more IMF’s. 
Selective reconstruction of facial images using IMF’s that 
do not contain illumination effects will enable us to 
reconstruct the fundamental nature of the data without the 
unwanted effects of illumination variation. 

3. RECOGNITION ALGORITHMS 
PCA [16] is applied to a collection of facial images to 
compute the principal directions of variation in the high-
dimensional facial space called Eigenfaces. Derivation of 
this basis requires solving the following generalized 
eigenvalue problem where X is a matrix containing the 
vectorized training facial images along its columns. 

vCvvXX T
λ== (1) 

where the covariance matrix C is symmetric and positive 
semi-definite. The eigenvectors corresponding to the 
largest eigenvectors computed in Eq. (1) form an optimal 
orthogonal basis in a minimum mean squared error sense. 

FLDA [8] finds the optimal projection vectors w such 
that the projected samples have a small within-class scatter 
(wTSWw), and large between-class scatter (wTSBw). This is 

done by maximizing the ratio of determinant of the 
projected between-class scatter matrix SB to the 
determinant of the within-class scatter matrix SW. 
However, the dimensionality of the data is larger than the 
number of samples causing the within-class scatter matrix 
SW to not be full rank leading to a zero determinant. To 
avoid a singular matrix SW, PCA is applied to the data to 
reduce the dimensionality and maintain a full-rank SW and 
then multi-class FLDA is implemented the reduced-
dimensional space [3]. Maximizing this ratio leads to the 
following generalized eigenvalue problem: 

wSwS WB λ= (2) 
Once LDA is performed, we can cascade the two 

projections into one transformation termed Fisherfaces [3] 
for convenience. Testing is performed by projecting 
training images into the Fisherface subspace and a simple 
nearest neighbor classifier is used to label the test image 
based on the residue.

Advanced Correlation Filters (CF’s) [17] are template-
based classifiers derived from spatial-frequency analysis 
that when correlated with an image result in a correlation 
plane with pre-desired response. The correlation plane C
measures the correlation between the filter and the image 
at all possible shifts. We use a standard measure called 
Peak to Correlation Energy (PCE) [17] to quantify the 
degree of correlation present. The Minimum Average 
Correlation Energy (MACE) Filter [11] minimizes 
correlation plane energy in C while constraining peak 
values at the origin to pre-specified values. To create the 
MACE filter we analyze the spectral power density of the 
training data X (containing the Fourier transformed 
images vectorized along each column) and placed on the 
diagonal of the matrix D. Our goal is to minimize energy 
E which is defined as: 

DhhE +

= (3) 
whose constrained minimization yields the filter hMACE: 

( ) uXDXXDhMACE

111 −
−+−

= (4) 

where u is the constrained peak values (vector of ones).  
The Unconstrained MACE (UMACE) Filter [13] 

removes the constraint on the correlation peak value 
allowing for more solutions to the minimization problem. 
We also try to maximize the average value of the peaks. 
The closed form solution to the filter hUMACE: 

mDhUMACE
1−

= (5) 
where m is a vector containing the average Fourier 
transform training image.  

We consider generalizations of the MACE and 
UMACE filters called the Optimal Tradeoff Synthetic 
Discriminant Function (OTSDF) filter and the 
Unconstrained OTSDF (UOTSDF) filter respectively [18]. 
These generalized filters offer sharp correlation peaks and 
noise tolerance. Given a desired proportion of peak 
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sharpness to noise tolerance α, hOTSDF and hUOTSDF follow 
Eqs. (4) and (5) respectively except D is replaced by T
defined as: 

( )PDT 21 αα −+= (6) 

where P is the Gaussian white noise matrix (identity 
matrix). 

4. EMD PREPROCESSING 
While there are extensions of the basic one-dimensional 
algorithm [9] to two-dimensional data [5], they are 
unnecessary in our experiments. Illumination effects are 
primarily due to one primary source of light which creates 
the majority of shadows and specular effects such as in Fig. 
2. As such we can treat these effects as linear in a one-
dimensional sense, although not necessarily along the 
typical axes. Treating each row or column of a facial 
image as separable we can string two-dimensional facial 
images into one-dimensional vectors. Application of EMD 
to these vectors yields a set of vector IMF’s which are then 
reshaped into matrix IMF’s as shown in Fig. 1. 

The stopping conditions set in the EMD algorithm 
determine the exact number of IMF’s but for our 
experiments and data we found that we obtain thirteen 
IMF’s. Regardless of the exact number of IMF’s, the last 
two IMF’s contains the majority of the illumination effects. 
Due to nature of the EMD algorithm, as the order of the 
IMF increases the relative mean of the data approaches 
zero [6]. As such, by applying EMD to facial images that 
are subject to illumination effects we can partition the 
effects into two types, shadowing and specular reflections. 
Since shadowing darkens regions of an image, it creates 
low-valued regions while specular reflections create 
relatively high-valued regions. These are effectively the 
largest magnitude extrema in the images, but also most 
slowly changing. In other words they represent the lower 
spatial frequency contents of the image. EMD isolates 
these frequencies in the last few IMF’s. 

Figure 1: Resulting IMF’s from Person 1, Image 1. Ordered 
from left to right, top to bottom in increasing order 

With this in mind, we look at the last two IMF’s and 
determine which one introduced the shadowing artifacts to 
the data. This is easily done by comparing the means of the 
two IMF’s and choosing the smaller one. Once we have 
determined which IMF is responsible for the effects of 
shadowing, we reconstruct the image without that IMF. 
The resulting facial image now contains significantly less 

shadowing effects and allows the fundamental nature of 
the facial image to come through more.

           
              (a)                    (b)                   (c)                      (d) 
Figure 2: Examples of facial image reconstruction excluding 
unwanted IMF. (a) Original image with right-side specular 
reflection. (b) Reconstructed image minus specular reflection. (c) 
Original image with left-side cast shadow. (d) Reconstructed 
image minus left-side cast shadow effects

5. EXPERIMENTAL RESULTS
We used the PIE database [15] which focuses on 
illumination variation with minimal pose and expression 
variation. The subjects are captured under lighting 
conditions creating shadows of varying orientations and 
degrees. The data consists of 100×100 pixel facial images 
of 65 different people of both genders. Each person has 22 
images yielding a total of 1430 images. 

Table 1: Average Equal Error Rate (EER) for PCA and FLDA 
and EMD processed images. 

# of  
Training 
Images 

PCA EMD-PCA FLDA EMD-FLDA 

2 0.2362 0.0474 0.1907 0.2422 
3 0.1557 0.0332 0.1553 0.2022 
4 0.1560 0.0241 0.1548 0.1523 
5 0.1214 0.0136 0.1153 0.1256 
6 0.1775 0.0159 0.1457 0.1417 
7 0.1327 0.0155 0.1235 0.0945 
8 0.1419 0.0090 0.0942 0.0877 
9 0.1305 0.0069 0.1149 0.0840 

10 0.1683 0.0083 0.1065 0.0883 
11 0.1816 0.0075 0.1165 0.1275 

Average EER's for MACE, UMACE, EMD-MACE, and EMD-UMACE
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Figure 3: Average EER’s for MACE and UMACE

Applying our EMD preprocessing to the entire 
database removed the significant illumination variation 
from the facial images. Training sets vary in size and 
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composition by random selection over multiple 
experiments for each of the three recognition algorithms. 
Each experiment involved training the recognition 
algorithm using the specified training set and then 
recording verification results. For PCA and FLDA ten 
experiments were run each while for CF’s only five due to 
computational intensity. Performance is quantified by 
average Equal Error Rate (EER) over all experiments.  

Average EER's for OTSDF, UOTSDF, EMD-OTSDF, and EMD-UOTSDF
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Figure 4: Average EER’s for OTSDF and UOTSDF 

6. CONCLUSIONS AND FUTURE WORK 
Experimental results demonstrate that EMD preprocessing 
is an effective approach in normalizing a facial image in 
both space and frequency especially when using very small 
sample size training sets. Results from CF’s, OTSDF and 
UOTSDF in particular, show that EMD preprocessing does 
not introduce undesired noise to the images. Even in its 
most simple form (one-dimensional, standard algorithm) 
EMD preprocessing achieves significant normalization of 
facial images subject to illumination variation with no a 
priori information. The simple implementation and 
effectiveness of EMD preprocessing indicates its usefulness 
as a preprocessing step in facial recognition algorithm. 
Expanding on the work presented here, we plan to improve 
results through multiple modifications such as the use of a 
true two-dimensional EMD algorithm [5] (that can 
possible be more suited when dealing from illumination 
artifacts arising from more than one illumination source). 
Different interpolation techniques and intelligent boundary 
conditions should increase the effectiveness of EMD 
preprocessing as illumination-variation normalization tool. 
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