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ABSTRACT

A method to establish correspondences between regions belonging
to independent segmentations of multiple views of a scene is pre-
sented. The trade-off between color similarity and projective simi-
larity of the matching regions is formulated in terms of a constrained
optimization, analogous to a Rate-Distortion budget-constrained al-
location problem, and solved using Lagrangian optimization tech-
niques.

Index Terms— Multiple view, region matching, Lagrangian op-
timization, image segmentation

1. INTRODUCTION

The idea behind this work is the possibility to exploit the informa-
tion in multiple views of a 3D scene to perform a joint segmentation
among them. As images belong to the same 3D scene, the resulting
partitions will take into account spatial and depth information, out-
performing an independent 2D segmentation of each view in terms
of similitude with a direct segmentation of the 3D space.

In general, image or scene segmentation is an ill-posed prob-
lem. Obviously, the best segmentation fitting the data is the own
data, that is, every pixel an isolated region. Hence, a regulariza-
tion term is needed. A typical approach is to perform a hierarchical
segmentation; that is, a segmentation through various steps relying
on different criteria of increasing complexity, using features such as
color, contour complexity, or texture [1].

In a multiple view scenario, the regularization can be handled
not only from features on the image but also with the spatial or depth
information carried by all the views. Generally speaking, the key
point of this approach is to regularize the segmentation in one of
the views using the set of remaining views. This way, the cost of
merging a region into an image is related with the cost of merging
the correspondent region into the 3D scene under a spatial criterion.

Nevertheless, before taking advantage of complex 3D informa-
tion within the segmentation process, the correspondences among
regions in different views must be established. A region matching is
performed; that is, each region on a view is associated, where possi-
ble, to its equivalent regions in the other views.

Similarly, region matching techniques have been used in motion
estimation and motion-based segmentation [2], finding correspon-
dences between regions in consecutive frames. They have proved to
be also useful in stereoscopic vision, although they have been usu-
ally applied not for segmentation purposes, but for dense disparity
map estimation of pairs of views [3].
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In general, due to occlusions or to the finite dimensions of im-
ages, a region appearing in a view may not have its correspondent
one either in some of the views or none of them. In addition, de-
pending on the segmentation process, a region could partially match
another region or have multiple correspondences.

The work presented in this paper tackles the initial step on the
multiple view region matching problem. Following the previous idea
of a segmentation based on different criteria of increasing complex-
ity, we propose a method to establish region correspondences in dif-
ferent views, starting from an initial fine partition for each view, ob-
tained independently under some criteria (for instance, color). Since
the proposed method is the initial 3D step in the multiple view seg-
mentation process, the criterion to be used is still simple (combining
color similarity and spatial coherence). Moreover, the result should
not be a complete matching of all regions in the different partitions
but a partial matching of the most reliable regions, which should
allow the robust estimation of more complex criteria for the subse-
quent matching and merging steps.

The method is based on a constrained optimization technique,
inspired on the Rate-Distortion (R-D) Optimization Theory. The
idea is to reduce the set of possible matching regions taking into ac-
count color similarity constrained to spatial coherence among them,
and take advantage of the Lagrangian optimization techniques to
solve the problem. At this initial stage the method is partition de-
pendent, i.e. matching results depend on the selected partition to
match and, thus, the established correspondences may not be sym-
metric with respect to the other possible partition selections.

In the next section, the multiple view region matching problem
is formally stated. Similarity measures in both color and projective
spaces are defined in Section 3. In Section 4 the multiple view re-
gion matching problem is formulated as a constrained optimization
problem and solved using Lagrangian optimization techniques. The
method is applied to a set of multiple views in Section 5. Finally,
conclusions are presented in Section 6.

2. MULTIVIEW REGION MATCHING PROBLEM

Formally, our region matching problem is stated as follow:

Problem Definition. Let us assume that we have N views of the
same scene, V 1...V N , with partitions, Π1...ΠN . These partitions
are obtained independently for each view. Without loss of generality,
let us select the partition of the first view, Π1. Our goal is to deter-
mine, for each region of Π1, ρ1

i ∈ Π1, which regions in the remain-
ing partitions better match ρ1

i , taking into account that a matching
may not exist for some views.

To allow unmatched regions is equivalent to adding an empty
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region to the set of regions in each partition. For simplicity, let us
define the extended set of partitions as:

Γk : {∅, ρk
i ∈ Πk} (1)

Thus, the correspondences of each region can be compacted into a
matching array:

ρ1
i ∈ Π1 ⇒ γ

i
= [γ2

i . . . γN
i ], γk

i ∈ Γk
(2)

Note that this formulation performs a many-to-one mapping into a
given Γk (neither injective nor surjective). The possibility of multi-
ple correspondences (many-to-many), that is not addressed in this pa-
per, could be interesting in the case of having oversegmented views.

In addition, it cannot be assured that the identified matchings
will be symmetric, i.e ρ1

i ⇒ ρk
j does not imply that ρk

j ⇒ ρ1
i . This

can be simply addressed by performing the matching when select-
ing each partition and then removing those matchings that are no
symmetric.

3. SIMILARITY CRITERIA

3.1. Color Similarity

A first matching criterion is color similarity between regions in dif-
ferent views. Let us assume that the color distribution of a region can
be modeled as a three-dimensional (RGB) spatially independent nor-
mal distribution, N(μρ, σρ), abbreviated as Nρ, where μρ, σρ ∈ R3

are the mean and variance of the color components of pixels be-
longing to the region. Hence, the similarity measure between region
colors can be estimated as a distance between statistical distributions
using, for instance, the Kullback-Leibler (KL) divergence [4]:

dKL(p, q) =

∫ +∞

−∞
q(x) log

q(x)

p(x)
dx (3)

We choose a symmetric version of the KL distance, known as Jef-
freys (JF) distance [5] as color similarity measure:

dJF (p, q) =
1

2
[dKL(p, q) + dKL(q, p)] (4)

Thus, the color distance between two regions is estimated as the
JF distance of their color distributions, assuming they are Gaussian.
The JF distance can be generalized to determine the color distance
of N different regions as follows:

dcolor(ρ1, · · · , ρN ) =

N−1∑
i=1

N∑
j=i+1

dJF (Nρi , Nρj ) (5)

The JF distance is chosen for its simplicity for the Gaussian case,
and because it allows a correct comparison even when the color dis-
tributions of two regions only match partially (for instance, when a
region is embedded in the other) [6].

3.2. Projective Similarity

The projective similarity between two regions will be based on the
epipolar distance between their centroids. Formally, the epipolar
distance from a point in a view, x1, with respect to a point in another
view, x2, is defined as the Euclidean distance from the epipolar line
generated by x1 into the second view, l2x1 , to the point x2:

dEpi(x
1, x2) = dEuclidean(l

2
x1 , x2) (6)

To obtain a symmetric distance function, as before, we can combine
distances computed in both directions. The symmetric measure we
will use is known as symmetric epipolar (SE) distance [7]:

dSE(x
1, x2) =

√
d2

Epi(x
1, x2) + d2

Epi(x
2, x1)) (7)

Its generalization for N views can be written as:

dSE(x
1, . . . , xN ) =

N−1∑
i=1

N∑
j=i+1

dSE(x
i, xj) (8)

Thus, the projective similarity between a set of regions in N different
views, ρ1

i . . . ρn
j . . . ρN

k , is defined as the SE distance of the set of

their centroids, c1
i . . . cn

j . . . cN
k :

dproj(ρ
1
i . . . ρn

j . . . ρN
k ) = dSE(c

1
i . . . cn

j . . . cN
k ) (9)

In this case, projective similarity is understood as measuring how
accurately the region centroids can represent projections of the same
3D point. This measure is simple and fast to compute, unlike other
proposed distances where inverse matrix computations or homogra-
phy estimation are required [8].

4. MULTIVIEW REGION MATCHING ALGORITHM

4.1. Rate-Distortion Analogy

Once similarity criteria have been defined, we have to determine the
set of regions that provides the best compromise between both cost
functions. We tackle this problem using a constrained optimization
framework. Intuitively, we could think of minimizing both: color
and projective distance. Nevertheless, minimizing the projective dis-
tance may not lead to the best solution, since the matched region
centroids may not backproject to the same 3D point, although we
expect them to be relatively close.

Symmetric epipolar distance penalizes regions far from the
epipolar line. Thus, we can determine a maximum allowed value
for the SE distance and to define a reasonable projective area into
the other views where a particular region can match its most color
similar region.

Taking these last considerations into account, the problem stated
in Section 2, i.e., finding the correspondences for each region of a
selected partition in the other partitions, can be formulated as an op-
timization problem, analogous to the budget-constrained allocation
problem in video coding [9].

Let us define the total color distance and the total projective dis-
tance of a partition matching, respectively, as the sum of the distance
of each region with respect to its array of matching regions in each
view, γ

i
, as defined in Section 3:

Dcolor =

Card(Π1)∑
i=1

dcolor(ρ
1
i , γi

) (10)

Rproj =

Card(Π1)∑
i=1

dproj(ρ
1
i , γi

) (11)

where Card(Π1) is the cardinality (number of regions) of Π1.
Following the analogy with R-D formulation for video coding,

Dcolor can be understood as the total distortion to minimize, and
Rproj as the total rate available. Hence, the problem can be written:

min
γ
1
··· γ

N

Dcolor s.t. Rproj ≤ RBudget
proj (12)
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Fig. 1: Example of multiple view region matching. The selected region in the first partition (yellow region on left image) is matched to a
region into the second and third view partitions. The epipolar lines generated by the region centroids in the other views are plotted (green).
The parameter setting for this example is: λ = 0.3, β = 3, where λ was determined by the method proposed in Section 4.3.

where RBudget
proj is the total projective error accepted in the complete

matching process and it is estimated as the sum of the security areas
defined for each partition (maximum estimated projective distance
at which a region can match).

Thanks to this formulation, we can solve the region matching
problem applying the R-D optimization techniques. Given that the
trade-off between color and projective distance is identical to the
rate-distortion trade-off, i.e. increasing projective distance will al-
ways lead to lower or equal color distance, R-D methods can be used
to determine operational points on the convex hull of the character-
istic. As proved in [10], this problem is equivalent to the Lagrangian
optimization problem:

min
γ
1
··· γ

N

Dcolor + λ · Rproj , λ ≥ 0 (13)

for the particular case Rproj ≤ RBudget
proj and its solution is also the

optimal solution of (12).
Since the set of correspondences for a partition may be found

independently for each region as a consequence of (10) and (11), the
sum is obviously minimized by simply minimizing:

Card(Π1)∑
i=1

min
γ

i

[dcolor(ρ
1
i , γi

) + λ · rproj(ρ
1
i , γi

)] (14)

Note that this method performs a joint optimization, taking into ac-
count the whole set of views, while implicitly handles the possibility
that a region may not have a correspondence (i.e., when it matches
the empty set) into some of the other views, thanks to considering
the extended set of partitions, Γk.

To close this formulation, there are two remaining issues. First,
the color distance and the projective distance with respect to the
empty set need to be defined (Section 4.2). Second, a method to
select λ has to be defined (Section 4.3).

4.2. Distance from a Region to the Empty Set

We need to define both, color distance and projective distance be-
tween a region and the empty set, dcolor(ρi, ∅) and dproj(ρi, ∅),
respectively. In other words, which color distance (distortion) is as-
signed to a region that does not match any regions into another view,
and what cost in terms of projective distance (rate) this causes.

Our method has to avoid matching a region when its trade-off
between color and projective similarity is not acceptable. Only pairs
leading to a low projective distance should match. On the contrary,
if all possible pairs for a given region lead to a prohibitively large
amount of the total projective budget, the region should be assigned
to the empty set. Consequently, unmatched regions should be asso-
ciated to very low color distances (distortion) and to very large pro-
jective distances (rate). Arbitrarily, we can define dcolor(ρi, ∅) = 0.

A large projective distance for a region will be related with the
maximum distance where we expect the region to match. Determin-
ing this value exactly will depend on the position of each view’s
camera and on the specific area and shape of the region. To simplify
the problem, we assume that the pixels of a region are uniformly
distributed around its centroid (in other words, regions are approx-
imately circular). This way the maximum matching distance for a
region can be specified in terms of its mean radium, i.e. the mean
distance from the region centroid to its border, rρ =

√
Aρ/π. The

projective distance assigned to an unmatched region should be larger
than the expected maximum distance for that region to match, and
also proportional to its mean radium:

dproj(ρi, ∅) = β · rρi (15)

This definition takes into account that large regions have a high prob-
ability to be matched in other views, and consequently, not matching
them has a larger penalty. The parameter β controls the number of
regions finding a correspondence or remaining unmatched; equiva-
lently, how expensive an unmatched region is in terms of rate.

4.3. Determining the Value of λ

In the video coding framework, solving the R-D problem via La-
grangian optimization is equivalent to finding the value of λ that pro-
vides the operational point with minimum total distortion, for a spec-
ified total rate; or viceversa, the minimum rate for a given distortion.

On the contrary, in multiple view region matching, we are not in-
terested in specifying a budget in terms of total projective distance.
Instead of allocating a finite amount of resources, our goal is to op-
timally combine two different matching criteria.

Thus, we will redefine the optimization in terms of the proba-
bility of incorrect matching (false alarm) and probability of correct
matching (hit). We would like to determine the value of λ that pro-
vides the maximum probability of correct matching for a specified
probability of incorrect matching; or viceversa, the minimum proba-
bility of incorrect matching given a probability of correct matching.

For this purpose, instead of a R-D curve, we will build an operat-
ing characteristic as a function of λ, identical to the operating curve
of a classifier: vary the λ parameter and plot the resulting correct
and incorrect matching rates. Note that, in general, this curve will
not be either symmetric or concave, since both probabilities will cor-
respond to arbitrary (non Gaussian) multidimensional distributions
[11]. However, λ → 0 implies a vanishing probability of false alarm
(see Fig.2).

In order to automatically select a λ value, we propose to ana-
lyze the set of projective distance (rate) curves, i.e. the curves gen-
erated by (11) when varying λ. As stated in the Introduction, we
want to apply in the first steps of the 3D segmentation a very con-
servative policy. Thus, we select the inflection point, related to the
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(a) Projective distance curves (b) Operating characteristics (c) Operating characteristics

Fig. 2: (a) Projective distance (rate) curve for different values of β, as a function λ, when left partition in Fig.1 was selected and matched to
the other two partitions. The black circles show the value of λ corresponding to the inflection point, related with the first maximum of the
first derivative, of a low-pass version of the projective distance curve. (b)(c) Operating characteristics (computed using the groundtruth) for
different values of β, as a function of λ. The circles show which point of the operating curve corresponds to the proposed λ selection in (a).

first maximum of the first derivative, of a low-pass version of the
projective distance curve (see Fig.2). This point corresponds ap-
proximatively with the end of the fast descending initial part of the
projective distance curve, and provides a good estimate of an opera-
tional point with null or low incorrect matching rate and the highest
correct matching rate (see Fig.2).

5. RESULTS

The results shown in this section are obtained from the set of syn-
thetic views shown in Fig.1, selected for the large amount of am-
biguity between regions, specially on the floor. The corresponding
partitions for each view (superposed in black in Fig.1) were gener-
ated by a color-based region merging procedure [1] until only 100
regions remained. Figure 1 shows an example where the correspon-
dences to the other views for a selected region in the first partition
were correctly found.

The projective distance curves, as a function of λ, are plotted
in Fig.2 for different values of the projective cost assigned to an
unmatched region (varying β, see Section 4.2). Their correspond-
ing operating characteristics, computed using the region matching
groundtruth, are also shown. The number of matching errors was
reduced computing the matchings when selecting each partition and
keeping only those coinciding at least in two partitions.

In Fig.2 the proposed selection method for λ is illustrated. For
a low-pass filtered version of the projective distance curve, the value
of λ corresponding to the inflection point related to the first maxi-
mum of the first derivative is determined. Observing the operational
characteristics, it can be seen that this point provides a conservative
choice, with a null or low incorrect matching rate while yielding a
high correct matching rate. Note that up to a 30% of all possible
correct matchings are determined for a null probability of incorrect
matching which is a very high value for an initial matching step not
using complex criteria (e.g.: shape or neighborhood information).

6. CONCLUSIONS

We have presented a multiple view region matching method based
on the similarity between regions in both color and projective space.
Although these measures are relatively simple, they correctly charac-
terize the correspondences between regions without any knowledge
of the shape of the regions, and therefore, they can be used in an
early stage in a hierarchical 3D segmentation.

To approach the stated problem we have taken advantage of a
formulation of the problem as a constrained optimization and we

have solved it using Lagrangian optimization techniques.
Once specified how expensive is not to match a region, i.e. con-

trolling the number of found correspondences, we propose a way to
estimate a conservative value of λ, i.e. providing the highest number
of correct matchings for a null or low incorrect matching rate.

Current work aims first at allowing a region in the selected par-
tition matching more than one region in the remaining partitions.
Moreover, the addition of contour and neighborhood information is
being analyzed to implement the subsequent steps of the hierarchical
multiple view segmentation.
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