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ABSTRACT
A new integro-differential invariant for curves in 3D transformed
by af ne group action is presented in this paper. The derivatives
involved are of the rst order, and therefore this invariant is signi -
cantly less sensitive to noise than classical af ne differential invari-
ants, the simplest of which involves derivatives of order 5. A classi -
cation procedure based on characteristic curves of an object surface
is considered using our proposed mixed invariants. Substantiating
examples are provided to verify ef ciency and discriminant power
of the characteristic spatial curve based 3D object classi cation.

Index Terms— 3D af ne transformation, af ne invariant,
object classi cation, invariant feature

1. INTRODUCTION

Curves and surfaces are the fundamental entities in shape/object
recognition problems in computer vision and pattern recogni-
tion. Their classi cation under Euclidean, af ne, or projective
transformations is challenging. A direct comparison of shapes
generally requires registration, and the ensuing complexity
and dif culty in its application in many important problems
have recently led to a renewed research interest in “transfor-
mation invariant”.
Differential invariants, such as Euclidean curvature and

torsion for space curves, are the most classical. The af ne
and projective counterparts of curvature and torsion may also
be de ned. The practical utilization of differential invariants
is, however, limited due to their high sensitivity to noise.
This motivated the high interest in other types of invari-

ants such as semi-differential, or joint invariants [2, 7, 6] and
various types of integral invariants [3, 10, 8]. Lin and Hu[11]
extended the continuous integral to a discrete setting and pro-
posed a “Summation Invariant”.
Integral invariants have advantage in applications, because

integration smoothes noise out and hence induces numerical
robustness. In particular these invariants were successfully
applied to face recognition [12].
Explicit expressions for integral invariants, however, ap-

pear to only be known for plane curves in 2D, and have thus
far remained elusive for spatial curves in 3D, primarily due to
their complexity. With an increasing availability of 3D data
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acquisition systems and subsequent emerging applications,
the interest has shifted to 3D integral invariants. To achieve
a trade-off between computational complexity of computa-
tion and numerical robustness, we derive a mixed integro-
differential invariant, that depends on the rst order deriva-
tives and integral variables.
In Section 2 we derive a novel mixed invariant, that de-

pends on the rst order derivatives and integral variables. The
integral variables are 3D analogs of the potentials introduced
in [8] for plane curves. In Section 3, we discuss an appli-
cation of this invariants to extracted curve features from 3D
objects for a subsequent classi cations applications. We pro-
vide some concluding remarks in Section 4.

2. MIXED INVARIANT

Fels and Olver [4][5] generalizedCartan’s[1] method for com-
puting differential invariants, so that it become applicable for
computing various types of invariants. Hann et al [8] intro-
duced integral variables and used Fels and Olver construction
to derive integral invariants for curves in 2D. Lin et al [11]
implemented the algorithm by turning integrals into summa-
tions. In this section, we use Fels-Olver construction and the
3D analog of Hann-Hickerman integral variables, to derive
a mixed integro-differential invariant for curves in 3D trans-
formed by the af ne group.

2.1. 3D Af ne Transformation

The full af ne group action on R
3 may be written as:

(x, y, z) �→ (a11x + a12y + a13z + a14, a21x + a22y

+a23z + a24, a31x + a32y + a33z + a34)

where aij ∈ R for i ∈ 1, 2, 3, 4, j ∈ 1, 2, 3, 4 and

det

⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ �= 0.

This group action may also be represented by the matrix

G =

⎛
⎜⎜⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1

⎞
⎟⎟⎠ .

I  4611424407281/07/$20.00 ©2007 IEEE ICASSP 2007



Our construction of invariants in the sequel will call on
pointwise de nite integrals which will in turn require an ini-
tial point on a curve, which we denote by (x0, y0, z0). This
will, as a result, eliminate translation parameters by merely
readjusting every other point relatively to (x0, y0, z0). The
simpli ed transformation may thus be written as:

⎛
⎝ x̄

ȳ
z̄

⎞
⎠ =

⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠

⎛
⎝ x

y
z

⎞
⎠ . (1)

This simpli cation will help reduce the total number of
parameters and hence of the number of equations as discussed
next. Note that the invariant we obtain for this simpli ed
group can always be converted back to that of the full af ne
group, by replacing (x, y, z) by (x − x0, y − y0, z − z0).

2.2. Extending Group Actions

Differential invariants for curves in R
n are obtained by pro-

longing the group action onR
n to the jet space Jk, parametrized

by coordinates of the curve and their derivatives up to the or-
der k. To obtain an invariant the total number of variables
should exceed the dimension of the group.
Han et al [8] prolonged the action to integral variables,

called, potentials, and derived the integral invariants for curves
in 2D. A similar approach may be adopted for a 3D setting.
To that end, we de ne potentials Di,j,k, Hi,j,k and Li,j,k of
order l as:

Di,j,k =

∫ x

0

xiyjzkdx, j + k �= 0

Hi,j,k =

∫ y

0

xiyjzkdy, i + k �= 0

Li,j,k =

∫ z

0

xiyjzkdz, i + j �= 0

where i + j + k = l.
By factoring out the translation, we reduced the action

linear group of dimension 9. The potentials up to second order
are suf cient to obtain an invariant. We de ne the following
integral variables,

r = D0,1,0, s = D0,1,0, t = H0,0,1, u = D1,1,0

v = D1,0,1, w = D0,1,1, m = H1,0,1, n = H0,1,1

o = L0,1,1, p = D0,2,0, q = D0,0,2

The af ne action is prolonged to these variables, and Fels-
Olvermethod is applied for nding invariants inR

14 parametrized
by

(x, y, z, r, s, t, u, v, w, m, n, o, p, q).

Solving the resulting system of equations for all group
parameters in this space, as required by Fels-Olver method,

quickly becomes intractable. As a tradeoff between the com-
putational complexity of solving the system of equations to
obtain an integral invariant, and the numerical sensitivity of
differential invariants to noise, we obtain a hybrid invariant
which utilizes rst order (least sensitive to noise) derivatives
and integral auxiliary variables.
To this end we prolong the action to R

16 parametrized by

(x, y, z, y′, z′, r, s, t, u, v, w, m, n, o, p, q),

where
y′ =

dy

dx
, z′ =

dz

dx
.

We use explicit formulas for the transformations of variables

(x, y, z, y′, z′, r, s, t, u, q)→ (x̄, ȳ, z̄, r̄, s̄, t̄, ȳ′, z̄′, ū, q̄),

which are omitted due to space limitations, except for x̄, ȳ, z̄
given by (1) above and q̄ given by (2) below.

2.3. Af ne Invariant in 3D Space

Following Fels-Olver procedurewe choose a valid cross-section

(x, y, z, r, s, t, y′, z′, u) = (0, 0, 1, 1, 1, 1, 1, 1, 0).

We then solve equations

(x̄, ȳ, z̄, r̄, s̄, t̄, ȳ′, z̄′, ū) = (0, 0, 1, 1, 1, 1, 1, 1, 0)

to nd the group parameters parameters

(a11, a12, a13, a21, a22, a23, a31, a32, a33)

that bring an arbitrary point to the cross-section.
The solution is shown in Appendix A. The mixed integro-

differential invariant is obtained by substitution of those ex-
pressions into the remaining non-normalized variable:

q̄ = a11(1/3 a31
2x3 + a32

2p + a33
2q + 2 a31a32u

+ 2 a31a33v + 2 a32a33w) + a12(a31
2
(
x2y − 2 u

)
+ 1/3 a32

2y3 + a33
2
(
yz2 − 2 o

)
+ a31a32

(
xy2 − p

)
+ 2 a31a33m + 2 a32a33n) + a13(a31

2
(
x2z − 2 v

)
+ a32

2
(
y2z − 2 n

)
+ 2 a31a32 (xyz −m− w)

+ a31a33

(
xz2 − q

)
+ 1/3 a33

2z3 + 2 a32a33o)

2.4. An Example

Consider two 3D spatial curves Fig. 1-a and Fig. 1-b for com-
parison. Fig. 1-b is related to Fig. 1-a by a full af ne trans-
formation. Since the invariant is a ratio its value blows up
at the points on the curve where the denominator is zero.
We selectively remove all numerical instability around these
points.The result is shown in Fig. 2. No obvious deviation
between the two invariants can be detected.
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Fig. 1. (a)3D curve 1(b)3D curve 2
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Fig. 2. the mixed invariant for curves 1 and 2

3. 3D OBJECTS CLASSIFICATION

A problem of curve comparison under af ne transformations
arise in many applications, in particular in biometrics [12] and
3D object clustering. In the present example, we consider
application to classi cation of 3D objects based on a set of
characteristic spatial curves.

3.1. Experimental Design

The Princeton Shape Benchmark[13] provides a repository of
3D models. A subset of four models are shown in Fig. 3.1.
We may assume that the characteristic curves have already
been extracted from 3D models in Princeton Shape Bench-
mark, as shown in Fig. 4. There are totally 50 characteris-
tic curves, and each of them are re-sampled to 5000 points.
Apply 10 randomly generated 3D af ne transformations to
these curves, and 10 variations for each curve are generated
(Fig. 5)1. The problem is to classify all of these curves. To
make this problem even more challenging and to illustrate the
noise sensitivity, gaussian noise with distributionN(0, σ2) is
added to each of the variation.
The discrimination power and sensitivity to noise are an-

alyzed using the error rate of classi cation of the proposed
mixed invariant and classical differential invariants, called af ne
curvature, are compared. (See [9] for the expression of the
af ne curvature in terms of the Euclidean invariants). Two
sets are required for classi cation purpose, namely training
set and classi cation set. The training set is obtained by ran-
domly selecting three variations out of ten from each charac-

1These curves would undergo such transformations when the 3D object is
subjected to a transformation.

Fig. 3. 3D models from The Princeton Shape Bench-
mark(Best visualized in color)
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Fig. 4. 3D spatial feature curves

teristic curve. The 7 left for each characteristic curve automat-
ically form the testing set. Such a classi er is implemented as
a Nearest Neighbor (NN) Classi er in Euclidean Space using
a L2 distance as a metric.

3.2. Experimental Results

Two experiments are carried out with different noise variance,
namely σ = 0.1 and σ = 1. The error rates of the two sigma
settings are shown in Table.I.
Due to higher order derivatives in differential invariants,

the error rates are over 60%, which makes the differential in-
variants practically useless. With only the rst order deriva-
tives and integrals, the Mixed Invariant reduces the error rate
dramatically from 60% to 10% and provides a practical so-
lution to classify curves under af ne transformation. But the

Table 1. error rate
Mixed Invariant Differential Invariant

σ = 0.1 0.0971 0.6086
σ = 1 0.1829 0.7314
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Fig. 5. 10 variations of a curve under af ne transformation

presence of the rst order derivatives in the Mixed Invariant,
results in a modest increase of error rate as the noise variance
is increased by an order of magnitude.

4. CONCLUSIONS

In this paper, we presented a new mixed invariant for curves
in 3D with respect to af ne transformation. This invariant de-
pends on the rst order derivatives and integral variables. Our
future work will focus on obtaining invariants which are fully
integral which will in turn provide additional robustness. An
application to classi cation of characteristic curves of a 3D
object as they are subjected to random af ne transformation
is considered.
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7. APPENDIX A

a11 = (6 znx− 6 zwy + 6 yox + 3 z2p + 3 y2q

−4 z2xy2)n4/((n1 + n2)n3)

a12 = (3 xqy + 6 uz2 + 6 xmz − 6 vyz − 5 x2yz2

+6 x2o)n4/((n1 + n2)n3)

a13 = (x2y2z − 6 uyz + 6 nx2 + 3 xpz + 6 vy2

−6 wxy − 6 mxy)n4/((n1 + n2)n3)

a31 = (y2z2 − 4 y2
z
′ s− y2xz

′ z + 2 yzrz ′ + 2 yxz
′ t

−4 yzt + yz2
y
′ x + 6 y

′ syz + 4 rz ′ t + 4 t2

−2 ty ′ zx− 4 y
′ st− 4 y

′ z2r)/(n3n4)

a32 = (x2
z
′ yz + 6 sz ′ yx− 2 syz − 3 yz2x− 4 tx2

z
′

−4 z
′ sr − 2 rxz

′ z + 6 tzx + 4 rz2 − 4 xsy ′ z

−4 st + 4 s2
y
′ + y

′ z2x2)/(n3n4)

a33 = (x2
z
′ y2 − 3 x2

y
′ yz + 4 x2ty ′ − 4 xyz ′ r

+3 xy2z + 6 xry ′ z − 6 xyt− 2 xysy ′ + 4 r2
z
′

−6 rzy + 4 sy2 + 4 rt− 4 y
′ sr)/(n3n4)

n1 = −3 xz
′ zp + 3 z2p− x2

z
′ zy2 + 6 znx

+ 6 y
′ zz′ − 6 z

′ vy2 + 3 y2q − 6 x2
z
′ n

+ 6 xz
′ my + 6 xz

′ wy

n2 = 5 y
′ z2x2y − 3 y

′ xqy − 6 zwy − 6 y
′ z2u− 6 yox

− 6 y
′ zxm + 6 z

′ zuy − 6 y
′ x2o− 4 z2xy2

n3 = xyz − 2 tx + 2 sy − 2 rz

n4 = 2 y
′ s + yxz

′ + yz − 2 rz ′ − 2 t− y
′ zx
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