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ABSTRACT

Computer-Aided Diagnosis (CAD) has become a major re-
search interest in diagnostic radiology and medical imaging.
The basic goal of CAD is to provide a computer output as
a second opinion to assist medical image interpretation by
improving accuracy, consistency of diagnosis, and image in-
terpretation time. Since a CAD system is only interested in
analyzing a speci c organ, segmentation of Computer To-
mography (CT) images is a precursor to most image analysis
applications. A fully automated method is presented to seg-
ment lung in pulmonary CT images based on detected lung
edges by wavelet analysis. Due to wavelet transformation
characteristics, the proposed method is not only computa-
tional inexpensive compared to other existing methods such
as snakes or watershed, but also is robust and accurate in de-
tecting lung borders. A set of 330 low dose (50mA) CT im-
ages were processed demonstrating accuracy and satisfactory
performance of the algorithm.

Index Terms— Computer-Aided Diagnosis, Pulmonary
CT Images, Wavelet Transformation, Segmentation, Edge
Detection

1. INTRODUCTION

Computer-Aided Diagnosis (CAD) is a major research inter-
est in diagnostic radiology and medical imaging. Many dif-
ferent types of CAD schemes are being developed for detec-
tion and/or characterization of various lesions for variety of
imaging modalities, including conventional projection radi-
ography, Computer Tomography (CT), Magnetic Resonance
Imaging (MRI) and Ultrasound. Organs currently being tar-
geted by CAD research include breast, chest, colon, brain,
liver, kidney, and the vascular and skeletal systems. As seg-
mentation of medical images is often a precursor to image
analysis applications, its accuracy is of great concern as seg-
mentation errors may potentially lead to misdiagnosis.
Several methods have been utilized to segment the lung

in pulmonary CT images such as thresholding [1], watershed
[2], snakes [3], and region growing [4]. Each has its own

drawbacks. Thresholding is the most popular lung segmenta-
tion method because it is one of the simplest in methodology
and computation. However, it has some drawbacks in lung
segmentation. CT lung density is in uenced by factors such
as subject tissue volume, air volume, image acquisition pro-
tocol, physical material properties of the lung parenchyma,
and degree of inspiration. These factors make the selection of
a single gray-level segmentation threshold dif cult, as differ-
ent thresholds are likely required for different subjects. Al-
though some work has used an adaptive threshold value, this
method still has some misregistrations on its segmentation
results such as missing boundaries between 2 regions when
there is not a signi cant discontinuity between the bound-
aries or the borders are too close together. For example, this
method requires additional post-processing steps to eliminate
the trachea and mainstem bronchi. Watershed on the other
hand gives an acceptable segmentation result with relatively
low computational cost. However, over-segmentation is a
well-known drawback in watershed segmentation. Snake is
an active contour which starts from an initial position and
shape and ts itself to the shape of a desire object(s). One
of the drawbacks of traditional snake model is that the con-
struction of initial contour often requires human interaction
and the segmentation results may be heavily sensitive to ini-
tial contour conditions. One disadvantage of region growing
is its computational intensity as well as it performance depen-
dance on its initial seeds.

Edge information in images is an important characteristic
of images’ content. Conventional edge detection algorithms
are typically based on differential operators, such as the So-
bel, Prewitt, and Roberts operators. Traditional differential
operators work well with edge detection of noiseless images,
however in the presence of noise may miss the edges or detect
false edges due to the intensity discontinuities. As addressed
in [5] and [6], wavelet expansion in higher scales suppress
effect of noise on edge detection process. Because of this ad-
vantage, several algorithms addressed the edge detection of
noisy signal or images, [5, 6, 7, 8, 9]. Medical images are
noisy in nature due to limitations of imaging techniques, de-
vice noise and health constraints (such as giving minimal ra-
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Fig. 1. Horizontal pro le (shifted by 1000) of lung in a CT
image at the top along with its wavelet transformations in
dyadic sequence below

diation doses to patients). De-noising as preprocessing step is
recommended in CAD systems even though de-noising may
suppress some important image edge details; for instance in
many techniques edges get blurred as result of de-noising.
Therefore algorithms with low sensitivity to noise tend to give
higher performance in medical images processing problems.
Wavelet transforms are multiresolution representations of

signals and images. They decompose signals into multiscale
details by applying a basis function to the signal, [7, 8]. The
basis functions used in wavelet transforms are locally sup-
ported and they are nonzero only over part of the represented
domain. This paper uses wavelet based de-noising because of
its ability to eliminate noise due to its subband decomposi-
tion algorithm. With the utilized mother wavelet, sharp tran-
sitions in images are preserved and depicted extremely well
in wavelet expansions. This fact has been examined by sev-
eral papers on de-noising the MRI images. Xu et al. [5] per-
formed wavelet transformation domain lter to de-noise MR
head images (SNR 12dB). Karras and Mertzios [10] proposed
edge detection in MRI images using combination of wavelet
transform and neural network. However to the best of our
knowledge, there has been no method proposed to de-noise
and segment CT images using wavelet transformation. In or-
der to perform a robust and accurate edge detection, which
leads to an accurate segmentation, our proposed algorithm
contains the following steps: Image enhancement, 2D Dis-
crete Wavelet Transformation, edge extraction, distinguishing
lung border and segmenting the lung region from the entire
image.

2. METHODOLOGY AND ALGORITHM FOR LUNG
SEGMENTATION

Figure 1 shows a horizontal pro le taken from a row of an
original CT thorax image. The signi cant discontinuities in
this pro le occur at the edges, while the small spikes in its

horizontal pro le represent image noise and slight changes
in body tissues or small objects in the image including small
vessels or bronchi. Choosing mother wavelet as derivative
of a smoothing function leads to preserving the signi cant
singularities along the scales and vanishing other singular-
ities while we are moving through the scales as described
in details at [7, 8, 9] and shown in gure 1. As mentioned
earlier, aerated lung pixels have extremely different intensity
compared to other surrounding body tissues. In this paper,
we considered all the insigni cant changes in lung pro le as
noise since we only interested in distinguishing the lung bor-
der, signi cant discontinuities, in the image. We proposed a
wavelet-based method that can overcome these issues and ex-
tract actual edges in a pulmonary CT image. Each CT image
was enhanced by applying a transformation to its histogram
considering that pixel values higher than average body CT
value were trimmed to avoid discontinuities detection around
bones.

2.1. Wavelet Transformation

Points of sharp variation are often among the most impor-
tant features for analyzing the properties of transient signals
or images. They are generally located at the boundaries of
important image structures. Singularities are generally char-
acterized by their Lipschitz exponents. The wavelet theory
proves that these exponents can be determined from the evo-
lution across scales of the wavelet transformmodulus maxima
[9]; even smoothness of an edge can be estimated from the de-
cay of the wavelet transform maxima across scales. Lipschitz
exponents and smoothing factors are numerical descriptors
that allow us to discriminate the intensity pro les of differ-
ent types of edges [9].
Wavelets are families of functionsΨs,t(x) generated from

a single base wavelet, called mother wavelet, Ψ(x) by dila-
tions and translations Ψs,t(x) = 1/

√|s|Ψ(x−t
s ) where s is

the dilation (scale) parameter, and t is the translation parame-
ter. Wavelets must have mean of zero, and the useful ones
have localized support in both spatial and Fourier domains.
We use the term 2D smoothing function to describe any func-
tion θ(x, y) whose integral over x and y is equal to 1 and
converges to 0 at in nity. The image f(x, y) is smoothed at
different scales s by a convolution with θ(x, y). The direc-
tion of the gradient vector,∇(f ∗θs)(x, y), at a point (x0, y0)
indicates the direction in the image plane (x, y) along which
the directional derivative of f(x, y) has the largest absolute
value. Edges are de ned as points (x0, y0) where the modu-
lus of the gradient vector is maximum in the direction towards
which the gradient vector points in the image plane. Edge
points are in ection points of the surface ∇(f ∗ θs)(x, y).
We de ne two wavelet functions Ψ1(x, y) and Ψ2(x, y) such
that Ψ1(x, y) = ∂θ(x,y)

∂x and Ψ2(x, y) = ∂θ(x,y)
∂y The wavelet

transform of f(x, y) at scale ‘s’ has two components, W 1
s f

andW 2
s f , de ned byW 1

s f(x, y) = f ∗Ψ1(x, y), (i=1,2) Usu-
ally, the wavelet model is not required to keep a continuous scale
parameter ‘s’. To allow fast numerical implementations, [9] im-
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(a) (b) (c) (d)

Fig. 2. (a) 2D wavelet transformation, shows the high scales
(b) edge map image (c) obtained edge mask from high scales.
(d) the segmented lung mask.

posed that the scale only varies along the dyadic sequence (2j)j∈Z .
Nonorthogonal wavelets are designed to satisfy the required charac-
teristic for detecting lung edges and suppressing noises in the CT
images. The mother wavelets are calculated from rst and second
derivatives of the smoothing function, θ(x), which is basically a
low pass lter in Fourier domain. Noise ltration in wavelet do-
main is based on the fact that sharp edges have large amplitude over
the dyadic scales, and noise dies out swiftly while ’s’ increases. We
are using the wavelet transform contents at several adjacent scales to
accurately detect the locations of edges and some other ne details.
If rst derivative of smoothing function is chosen as mother wavelet,
the edges will be distinguish as local maxima points. Therefore, by
increasing scale only signi cant maxima, which represent the edge
points, will remain over the wavelet transformation and noise will be
removed on these scales. In case of choosing the second derivative
as mother wavelet, the zero crossing will be considered as location
of edges through the scales. However, considering the zero crossing
would not give good information on the edge locations since every
singularity in the image leads to a zero crossing. So other informa-
tion should be combined with location of zero crossing in order to
distinguish between signi cant discontinuities and the rest.

The proposed method considers high dyadic scales, above 3, of
the wavelet transformation when the rst derivative of smoothing
function employed in order to determine an approximation of edge
locations, the initial edge map. Because those scales do not contain
the image’s nest details as well as noise, they only represent the
signi cant singularities in the image. By thresholding 2D wavelet
transformation of the image on those scales, the initial image’s edge
map was developed. However, produced edge map represents the
edge between lung and other adjunct body parts as well as lung ves-
sels and the other organ body edges such as Thoracic or even sur-
rounding non-body objects. Figure 2(a) and (b) illustrate the wavelet
transformation resulted from combination of third and forth scales
and its thresholded image.

2.2. Edge map analysis

The next step is to eliminate the objects in the edge map whose area
are relatively small in comparison to the size of the image. These ob-
jects represent lung vessels or some surrounding non-body objects.
Then body outer border was distinguished in the edge map image
and eliminated as well as all the edges located outside the body, that
are mostly related to CT equipment or objects outside the body. The
result is shown in gure 2(c). Upon applying the above mentioned-
steps, a mask which is an approximation of lung boarders will be
obtained. Since thresholded high scales of wavelet transformation

Fig. 3. Selected images of several patients along with its cor-
responding segmentation results

was used, the edge map not only illustrates the edges but also it con-
tains the edge neighbor pixels. The nal decision on edge locations
was taken based on the rst scale information when the second deriv-
ative on smoothing function had been used as mother wavelet. The
rst scale was used since it contains the nest details of edges and
its zero crossings accurately represent the lung edges trapped inside
the initial mask. This accuracy arises from the signi cant singular-
ity (contrast difference) between the lung and body voxels. In order
to get higher accuracy on reading the zero crossings, the maximas
of negative image of wavelet transformation’s magnitude along the
initial edge map were considered instead of zero crossings. The ob-
tained mask is illustrated in gure 2(d).

3. EXPERIMENT

A set of pediatric pulmonary CT images was used to evaluate per-
formance of proposed method in lung segmentation. These images,
which are acquired at dose of 50mAs. A database containing 330
DICOM images randomly chosen from randomly selected patients
were evaluated by the proposed algorithm. Written software inMAT-
LAB is implemented on a computer with 1.7GHz processing speed
with 512MB RAM. The result of this experiment revealed each DI-
COM image was processed in 2.23Sec on average. Twelve results
of this experiment along with the corresponded segmentation results
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Fig. 4. (a) and (b) The dense structures adjunct to the lung
border have not been considered as lung area. (c) and (d)
Patient with large opacity in his lung. (e) original CT thorax
image, (f) segmented lung as result of Dajnowiec algorithm
and (g) segmented by the proposed method. Note the more
accurate outlining of the lung border along its medial edge.

are listed in gure 3. In order to have visually smooth borders, the
lung borders are smoothed by a rolling ball with 3 pixels in diameter.

4. DISCUSSION AND CONCLUSION

We found very close correlation between the actual lung borders
and automatically identi ed borders by computer. The borders were
matched except where the lung border had fuzzy edges; even in
these cases the difference was less than 3 pixels. Comparison be-
tween our segmentation results and manual segmentation of an ex-
perienced radiologist proved that the proposed algorithm is capable
of segmenting lung in pulmonary CT images with high accuracy.
Comparison between obtained results between our proposed method
and proposed algorithm by Dajnowiec et al. [11], which combines
multilevel thresholding with 3D region growing to obtain better per-
formance, on a series of DICOM images proved that our proposed
method outperformed the previous algorithm in speed and accuracy.
The volume between the manual segmentation and results of each
method was considered as segmentation error. The proposed method
error was evaluated to be about 10mm3 whereas region growing
method error to be in range of cm3. An original image and result
obtained from each method are illustrated in gures 4 (e), (f), and
(g). Additionally, the algorithm should prove its advantage in appli-
cations where the processing time is important because of its com-
putational inexpensive nature in compare to other existing segmen-
tation methods. This method does not involve any iterative steps un-
like other methods such as Snakes, and Watershed transform where
the result has to be modi ed after each iteration till they meet their
termination criteria(s). Secondly, wavelet transformation is not com-
putational expensive. For further reduction in the computation cost,
the transformation can be computed with lower computation order
upon the numerical implementation of fast wavelet transform algo-
rithms which are given in [9]. In some cases the dense structures
adjacent to aerated lung border will not be considered as lung area

as shown in gure 4(a) and (b). This may be an advantage of the
proposed method since these pro les contain the wall nodules and
should be considered for wall nodule detection purposes. Since the
proposed method uses edge information to segment the lung in CT
images, the method may have error if the slices get processed inde-
pendently and a large portion of patient’s lung was lled with large
opacities in a way that the opacity connects cross borders of lung
together as shown in gure 4(c) and (d). However, the 3D rendering
of lung or anatomical knowledge can be used to overcome drawback
of processing slices independent of each others.
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