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ABSTRACT

Estimation of DNA copy number in a given biological
sample is an extremely important problem in genomics.
This problem is especially challenging when the num-
ber of the DNA strands is minuscule, which is often the
case in applications such as pathogen and genetic muta-
tion detection. A recently developed technique, real-time
polymerase chain reaction (PCR), ampli es the number
of initial target molecules by replicating them through
a series of thermal cycles. Ideally, the number of tar-
get molecules doubles at the end of each cycle. How-
ever, in practice, due to biochemical noise the ef ciency
of the PCR reaction, de ned as the fraction of target mole-
cules which are successfully copied during a cycle, is al-
ways less than 1. In this paper, we formulate the problem
of joint maximum-likelihood estimation of the PCR ef -
ciency and the initial DNA copy number. As indicated by
simulation studies, the performance of the proposed esti-
mator is superior with respect to competing statistical ap-
proaches. Moreover, we compute the Cramer-Rao lower
bound on the mean-square estimation error.
Index terms – biomedical signal processing, estimation,
error analysis

1. INTRODUCTION

Ampli cation and quanti cation of DNA strands with poly-
merase chain reaction (PCR) process [1] is an essential
part of many biotechnological procedures. Applications
of PCR [2] include genotyping, detection of infectious
and hereditary diseases, and genetic ngertyping, to name
a few. Typically, a given biological sample contains only
a small amount of a target DNA. PCR ampli es the tar-
get in vitro, relying on an enzymatic replication process in
each of its temperature-regulated cycles (typically, 30−40
of them). A PCR cycle, illustrated in Figure 1, consists
of three distinct phases: denaturing, annealing, and ex-
tension. During denaturing, the sample is heated (typi-
cally, to temperatures above 90◦C) to break the hydro-
gen bonds between strands of the target DNA fragments,
creating twice as many single-stranded fragments. Each
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of the single-stranded DNA fragments serves as a tem-
plate during the second phase, annealing, when the sam-
ple is cooled down to temperatures typically between 40−
72◦C. At such temperatures, primers – short sequences
of nucleotides, designed to be exact complements to spe-
ci c regions on the templates – hybridize to the templates.
There are two types of primers, one for each of the two
types of templates. The primers serve as initiation sites
for a DNA polymerase enzyme activated in the last phase
of a cycle, extension. The sample is heated to 72◦C max-
imizing the rate of extension while ensuring that the par-
tially extended primers remain attached to the templates.
Ideally, at the end of the extension phase, there are twice
as many double-stranded target DNA strands as there were
at the beginning of the cycle. This implies an exponential
growth of the number of the target DNA. However, prac-
tical issues affect the replication process adversely and
the ef ciency of PCR – de ned as the probability of gen-
erating a replica of each template molecule – is smaller
than 1. The random nature of the underlying biochemical
process leads to variations in the PCR yield. Moreover,
the creation of non-speci c byproducts in the replication
process further diminishes the purity of the PCR product.
The probabilistic nature of the replication process is ad-
dressed in [6]-[9], where various stochastic models have
been proposed. In [10], the mutations-related effects that
plague the ef ciency of PCR have been studied.

Fig. 1. Typical PCR cycle

Quanti cation of the created amplicons (DNA mole-
cules obtained by the replication of the initial DNA strand)
is based on measuring the light intensity originating from
the uorescent reporter molecules incorporated into the
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double-stranded DNA (dsDNA). One such reporter is SYBR
Green I, a dye that binds to dsDNA after which its uo-
rescence activity increases signi cantly. Other reporters
include hybridization and TaqMan probes (see, e.g., [3]).

In real-time PCR, the uorescent signal is measured
at the end of each cycle. The measured light intensities
comprise a reaction pro le, usually plotted against the
number of cycles. A typical reaction pro le has three dis-
tinct phases: a background phase, an exponential growth
phase, and a saturation phase. During the rst phase,
the background noise originating from unbound probes
dominates the useful signal emanating from the probes
attached to the templates. Although the uorescent level
of the unbound probes is much lower than the uorescent
level of the probes bounded to the double-stranded target
DNA, the former signi cantly outnumber the latter dur-
ing the rst 15− 20 cycles. The second phase starts when
the signal from the PCR products rises suf ciently above
the background noise. Typically, measurements collected
during the exponential growth phase (also referred to as
the log phase) are the only ones used to infer information
about the original number of the DNA targets in the bi-
ological sample. The reason for imposing such a restric-
tion is that the ef ciency of PCR can be assumed con-
stant in the rst two phases, which makes the estimation
tractable. In the third phase of PCR, however, the ef -
ciency decreases rapidly as the reaction enters a plateau.

The ultimate goal of PCR is the estimation of the ini-
tial number of target molecules. In practice, this is com-
monly done by comparing a PCR reaction pro le with the
reaction pro le of a so-called standard, where the latter
are recorded for several initial concentrations of a target
which has the same ef ciency as the DNA target of inter-
est. In recent work [7], [8], the reaction pro le is used
directly (i.e., without use of a standard) to estimate the ef-
ciency, which in turn is then used to nd an estimate of

the initial number of the DNA target molecules.
In this paper, we nd the joint maximum-likelihood

estimate of the PCR ef ciency and the number of initial
target molecules. Furthermore, we nd the Cramer-Rao
lower bound on the minimum mean-square error of the
estimated parameters and illustrate by simulations that the
proposed estimator can achieve it.

2. THE MODEL AND JOINT ML ESTIMATION

Let x0 denote the initial copy number of target DNA mole-
cules which we want to estimate. We assume that the ef-
ciency of replication during both the background phase

and the exponential phase is constant, and denote it by p.
(During the saturation phase, the ef ciency drops as the
reaction approaches a plateau. For the sake of simplic-
ity of the estimation procedure, we use only the measure-
ments taken at the end of the cycles wherein the ef ciency
is constant.) Furthermore, denote the number of target

molecules at the end of the nth cycle by xn, and note that

xn = xn−1 + an,

where an is the number of amplicons that have been cre-
ated in the nth cycle. Since the probability that each of
the xn−1 available amplicons extends in the nth cycle is
p, it is easy to see that an is a binomial random variable
with mean pxn−1 and variance p(1 − p)xn−1. We may
therefore write

xn = (1 + p)xn−1 + x̃n, (1)

where x̃n is a random variable with zero mean and vari-
ance p(1 − p)xn−1. Recursion (1) describes a branching
process, often used to model replication in biological sys-
tems [5]. It is not too dif cult to show (see, e.g., [6]) that
the mean of xn in (1) is given by

E{xn} = (1 + p)nx0. (2)

Furthermore, its variance can be found as ([6])

σ2n =
1− p

1 + p

[
(1 + p)2n − (1 + p)n

]
x0. (3)

Imperfect instrumentation and other biochemistry in-
dependent sources create a noise which corrupts the mea-
surements of xn. We assume that the noise is additive
Gaussian N (0, σ2w), and denote it by wn. Hence, the
quantity measured is given by

zn = xn + wn.

Let us denote the number of temperature cycles in the
background phase of PCR by k. Therefore, the rst mea-
surement taken beyond the background noise level is zk+1.
Furthermore, denote the number of temperature cycles in
the exponential phase by l. Hence, the last measurement
taken before the ef ciency starts to rapidly deteriorate is
zk+l. Introduce a new variable, y, de ned as

y =

⎡
⎢⎢⎢⎢⎢⎣

zk+1−(1+p)k+1x0
σk+1

zk+2−(1+p)k+2x0
σk+2

...
zk+l−(1+p)k+lx0

σk+l

⎤
⎥⎥⎥⎥⎥⎦
.

Note that y is zero-mean. Finding the exact probability
density function (pdf) of y appears to be dif cult. On the
other hand, we can express y as a sum of x0 identically
distributed random variables,

y = y1 + y2 + · · ·+ yx0 ,

where each summand is given by

yi =

⎡
⎢⎢⎢⎢⎢⎣

xi,k+1+wk+1/x0−(1+p)k+1

σk+1
xi,k+2+wk+2/x0−(1+p)k+2

σk+2
...

xi,k+l+wk+l/x0−(1+p)k+l

σk+l

⎤
⎥⎥⎥⎥⎥⎦
,
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where xi,j denotes the number of the amplicons at the end
of the jth cycle which have originated from the ith target
molecule in the original sample. Moreover, y1,y2, . . . ,yx0

are independent since they are comprised of the measure-
ments taken in the rst two phases of PCR, during which
targets do not inhibit each other’s replication. Therefore,
y can be represented as a sum of a large number of zero-
mean independent, identically distributed (iid) random vari-
ables. We thus invoke the central limit theorem to argue
that the distribution of ymay be approximated by a multi-
variate Gaussian distribution.

Note that the (i, j)-entry of the l× l covariance matrix
of y, R, is given by

R(i, j) = E{yiyj}

=
E{zk+izk+j} − (1 + p)2k+i+jx20

σk+iσk+j
, (4)

where yi and yj denote the ith and the jth component of
y, respectively. We can show that

R(i, j) = (1 + p)j−i σk+i

σk+j
+

σ2w
σk+iσk+j

δi−j ,

where

δi−j =
{

1, if i = j,
0, otherwise,

Now that we computed the covariance matrix R, the
probability density function of y can be approximated by
the multi-variate Gaussian distribution

fy(y) =
1

(2π)l/2(detR)1/2
e−

1
2y

TR−1y. (5)

Note that fy(y) depends on x0 and p through both y and
R.

2.1. Optimal estimation of x0 and p

The joint maximum-likelihood estimate of x0 and p can
be found by solving the maximization problem

max
x0,p

fy(y),

or, equivalently, by solving the minimization

min
x0,p

{yTR−1y + log detR}. (6)

On the other hand, the traditional approach to the es-
timation of the initial population in a branching process
(see, e.g., [11]) rst focuses on nding the maximum-
likelihood estimator of p,

p̂ =
zk+1 + · · ·+ zk+l

zk + · · ·+ zk+l−1
− 1. (7)

Then, the above estimate p̂ is used to estimate x0 as

x̂0 =
zk+l

(1 + p̂)k+l
. (8)

Note that for the reliability of the estimate p̂ in (7), we
only use measurements taken in the exponential phase of
the PCR.

The objective function of the optimization (6) is not
convex. To solve it, one can use, e.g., a gradient search
initialized by x̂0 and p̂ obtained from (8) and (7), respec-
tively.

3. LIMITS OF PERFORMANCE OF PCR: THE
CRAMER-RAO BOUND

The minimum mean-square error of any estimation pro-
cedure is lower bounded by the Cramer-Rao bound [12].
We will derive the Cramer-Rao lower bound (CRLB) and
use it to quantify the limits of achievable performance of
DNA estimation in PCR.

Collect the parameters that need to be estimated into
a vector, cT = [x0 p]T . The Fisher information matrix,
F , is given by the negative of the expected value of the
Hessian matrix of log py|c(y), i.e.,

F = −Ey
{∇c∇T

c log py|c(y)
}
.

Therefore, the entries of the 2× 2 matrix F are given by

Fij = −Ey
{

∂2

∂ci∂cj
log py|c(y)

}
,

where, for compactness of the notation, ci and cj denote
the entries of c (i.e., c1 = x0, c2 = p). Assuming an unbi-
ased estimator, the CRLB on the minimum mean-square
error of estimating x0 is given by

E
{
(x̂0 − x0)2

} ≥ [F−1]11, (9)

where [F−1]11 denotes the (1, 1)-entry of F−1. Similarly,
the CRLB on the minimum mean-square error of estimat-
ing p is

E
{
(p̂− p)2

} ≥ [F−1]22, (10)

where [F−1]22 denotes the (2, 2)-entry of F−1.
Let us denoteL1(c) = log detR andL2(c) = yTR−1y,

so that we can write

L(c) = log(py|c(y)) = − log(2π)− 1
2
L1(c)− 1

2
L2(c).

Therefore, the Fisher information matrix can be written
as

F =
1
2
Ey

{∇c∇T
c L1(c)

}
+

1
2
Ey

{∇c∇T
c L2(c)

}
.
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It is easy to nd the components of∇c∇T
c L1(c),

∂2

∂ci∂cj
L1(c) = Tr

{
−R−1 ∂R

∂cj
R−1 ∂R

∂ci
+R−1 ∂2R

∂cj∂ci

}
,

(11)
where Tr {·} denotes the trace operation over its argu-
ment. Finding the components of ∇c∇T

c L2(c) is some-
what more involved. Due to space limitation, we omit the
derivation – although straightforward, the nal expres-
sions for Fij is fairly cumbersome to write (for details,
we refer the interested reader to [13]). It suf ces to say
that one may use a symbolic math manipulation package
(e.g., Mathematica, Maple) to ef ciently compute Fij for
a given set of parameters (σ2w, k, l, x0, p). This, in fact,
is how we proceed: we use Mathematica to evaluate the
CRLBs in (9) and (10) for any given set of the RT-PCR
experiment parameters.

4. SIMULATION RESULTS AND CONCLUSION

In Figure 2, we compare the mean-square error of the es-
timate of x0 computed by (6) and that of (8), and compare
them with the Cramer-Rao lower bound. The PCR is sim-
ulated as a branching process with x0 = 1000, while the
variance of the noise in the exponential phase is assumed
to be 1/100 of the measured signal intensity.
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Fig. 2. Comparison of the estimation mean-square errors
E(x̂0 − x0)2

From Figure 2, we see that the proposed joint ML es-
timator (6) signi cantly outperforms the estimator (8) for
all considered values of p. Furthermore, the mean-square
error of the joint ML estimator is almost achieving the
Cramer-Rao lower bound. The slight discrepancy could
be caused by the approximation of the distribution of y
by a Gaussian.

It is of interest to extend the results presented here to
the case where the ef ciency is not constant, but changes
according to a known model. Furthermore, a study of the
PCR in the saturation phase is also of interest.
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