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ABSTRACT 

This study presents a similarity-determining method for 
measuring regulatory relationships between pairs of genes 
from microarray time series data. The proposed similarity 
metrics are based on a new method to measure structural 
similarity to compare the quality of images. We make use of 
the fact that Dual-Tree Wavelet Transform (DTWT) can 
provide approximate shift invariance and maintain the 
structures between pairs of regulation-related time series 
expression data. Despite the simplicity of the presented 
method, experimental results demonstrate that it enhances 
the similarity index when tested on known transcriptional 
regulatory genes.  

Index Terms— Time series, Wavelet transforms

1. INTRODUCTION 

Time series data, such as microarray data, are increasingly 
important in numerous applications. Microarray series data 
provides us a possible means for identifying transcriptional 
regulatory relationships among various genes. To identify 
such regulation among genes is challenging because these 
gene time series data result from the complex activation or 
repression exertion of proteins.  Several methods are 
available for extracting regulatory information from time 
series microarray data, including simple correlation analysis 
[5], edge detection [7], and the event method [12]. Among 
these approaches, correlation-based clustering is perhaps the 
most popular one for this purpose. This method utilizes the 
common Pearson correlation coefficient to measure the 
similarity between two expression series profiles and to 
determine whether or not two genes exhibit a regulatory 
relationship.  Four cases are considered in the evaluation of 
a pair of similar time series expression data. 

(1) Amplitude scaling: two time series gene 
expressions have similar waveform but with 
different expression strengths.  

(2) Vertical shift: two time series gene expressions 
have the same waveform but the difference between 
their expression data is constant.  

(3) Time delay (horizontal shift): A time delay exists 
between two time series gene expressions. 

(4) Missing value (noisy):  Some points are missing 
from the time series data because of the noisy nature 
of microarray data.  

Generally, the similarity in cases (1) and (2) can be solved 
easily using the Pearson correlation coefficient (and the 
necessary normalization of each sequence according to its 
mean). However the time delay problem caused by the 
regulatory gene on the target gene significantly degrades the 
performance of the Pearson correlation-based approach.   
Over the last decade or so, the discrete wavelet transform 
(DWT) has been successfully adopted to various problems 
of signal and image processing. The wavelet transform is 
fast, local in the time and the frequency domain, and 
provides multi-resolution analysis of real-world signals and 
images. However, the DWT also has some disadvantages 
that limit its range of applications. A major problem of the 
common DWT is its lack of shift invariance, which is such 
that, on small shifts, the input signal can abruptly vary in the 
distribution of energy between wavelet coefficients on 
various scales. Several authors [6, 16] have proposed that in 
a formulation in which two dyadic wavelet bases form a 
Hilbert transform pair, the DWT can provide the answer to 
some of the aforementioned limitations. As an alternative, 
The Kingsburg’s dual-tree wavelet transform (DTWT) [10, 
11] achieves approximate shift invariance and has some 
applications in motion estimation [15] and texture synthesis 
[9].  
Wavelets have been recently used in the similarity analysis 
of time series because they can extract compact feature 
vectors and support similarity searches on different scales 
[3]. Chan and Fu [2] proposed an efficient time series 
matching strategy based on wavelets. The Haar wavelet 
transform is first applied and the first few coefficients of the 
transform sequences are indexed in an R-tree for similarity 
searching. Wu et al. [19] comprehensively compared DFT 
and DWT transformations, but only in the context of time 
series databases. Aghili et al. [1] examined the effectiveness 
of the integration of DFT/DWT for sequence similarity 
searching of biological sequence databases. 
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Recently, Wang et al. [18] have developed a measure of 
structure similarity (SSIM) for evaluating image quality. 
The SSIM metrics models perception implicitly by taking 
into accounts high-level HVS characteristics. The simple 
SSIM algorithm provides excellently predicting the quality 
of various distorted images. The proposed approach to 
comparing similar time series data is motivated by the fact 
that the DTWT provides shift invariance, enabling the 
extracting of the global shape of the data waveform, and 
therefore, such measures are to catch the structural 
similarity between time series expression data. The goal of 
this study is to extend the current SSIM approach to the 
dual-tree wavelet transform domain, and based it on a 
similarity metric, creating the dual-tree wavelet transform 
SSIM. This work reveals that the DTWT-SSIM metric can 
be used for matching gene expression time series data. The 
regulation-related gene data are modelled by the familiar 
scaling and shifting transformations, indicating that the 
introduced DTWT-SSIM index is stable under these 
transformations. Our experimental results show that the 
proposed similarity measure outperforms the traditional 
Pearson correlation coefficient on Spellman’s yeast data set. 

2. WAVELET TRANSFORM AND SIMILARITY 
AMONG TIME SERIES DATA 

2.1. Dual tree wavelets transform (DTWT) 
The DTWT is made by computing two parallel wavelet tree, 
tree A and tree B which act upon shifted samples of the 
input so that tree B picks the samples which tree A 
decimates. This leads to approximate shift invariance rather 
than the conventional DWT coefficients which are shift 
sensitive. The DTWT expansion of a signal ( )f x  is given 
by 
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where 0( , ) c i k and ( , )d i k  are the scaling and wavelet 

coefficients of the DTWT, using dual-tree scaling functions 

0 ,ki  and wavelet functions ,i k , respectively. For simplicity 

of notation, the wavelet coefficients ( , )d i k  of a 

signal ( )f x  are denoted as xd .

2.2. DTWT-SSIM Index 
The proposed application of the DTWT to evaluate the 
similarity among time series data is inspired by the success 
of the spatial domain structural similarity (SSIM) index 
algorithm in image processing [18]. The use of the SSIM 
index to quantify image quality has been studied. The 
principle of the structural approach is that the human visual 
system is highly adapted and can extract structural 
information (about the objects) from a visual scene. Hence, 

a metric of structure similarity is a good approximation of a 
similar shape in time series data.  
A major shortcoming of the spatial domain SSIM algorithm 
is that it is very sensitive to translation, and the scaling of 
signals. The DTWT is approximately shift-invariant. 
Accordingly, the similarity between the global shapes of 
related time series data can be extracted by comparing their 
DTWT coefficients. Therefore, an attempt is made to extend 
the current SSIM approach to the dual tree wavelet 
transform domain and make it insensitive to “non-structure” 
regulatory distortions that are caused by the activation or 
repression of the gene series data. 
Assume that the expression time series data of two genes 
x and y are represented by two vectors 

1 2[ , ,..., ]nx x xx and 1 2[ , ,..., ]ny y yy , where n  is 
the number of sampled data points measured along the time 
axis.
Suppose that in the dual tree wavelet transform domain, 

{ | 1, 2 , ...,  }
,

d d i N
x x i

 and 
,{ | 1, 2, ...,  }y y id d i N

are two sets of the DTWT wavelet coefficients extracted 
from one fixed  decomposition level of the expression series 
data x and y . Now, the spatial domain SSIM index is 
naturally extended to a DTWT domain SSIM as follows 
[18]. 
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The third equality in Eq. (1) derives from the fact that the 
dual-tree wavelet coefficients of x and y are zero mean 

( 0
x yd d ), because the DTWT coefficients are 

normalized according to their average after the time series 
gene data taking DTWT. Herein ,| |x id  denotes the 

magnitude (absolute value) of the complex numbers ,x id  , 

and 2K  is a small positive constant to avoid instability when 
the denominator is very close to zero.   

2.3. Sensitivity Metric 
The linear transformation is a convenient way to model the 
regulation-related gene expression that was described in the 
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Introduction section. Now, the scaling and shifting 
(including vertical and horizontal) relationships that follow 
from regulation is described in terms of matrices and the 
following coordinate system. 
Let 1 2[ , ,..., ]nx x xx and 1 2[ , ,..., ]ny y yy be two 

gene expression data, we define A By x by 

1 2 1 2[ , ,..., ] [ , ,..., ]T T T
n ny y y A x x x B ,

where matrix A  and vector B  specify the desired relation. 
For example, by defining  (identity matrix)n nA I  and 

1 2[ , , , ]nB b b b , this transformation can carry out 
vertical shifting. Similarly, the scaling operation is 

 ( : scaling factor)n nA r I r and [0,0, , 0]B .

The condition number ( )A  denotes the sensitivity of a 
specified linear transformation problem. Define the 
condition number ( )A as

1( ) || || || ||A A A , where A is a n n  matrix and 

1 1

|| || max | |.
n

iji n j

A a

For a non-singular matrix, 
1 1( ) || || || ||  || || || || 1.A A A A A I

Generally, matrices with a small condition number, 
( ) 1A , are said to be well-conditioned. Clearly, the 

scaling and shifting transformation matrices are well-
conditioned. Furthermore, the composition matrix of these 
well-conditioned transformations still satisfies ( ) 1A .
Fig. 1 and Table 1 present example comparison of the 
stability of DTWT-SSIM index and Pearson coefficient 
under shifting and scaling transformations. Figure 1 shows 
the original waveform SIN and some distorted SIN 
waveforms with various scaling and shifting factors. The 
similarity index between the original SIN and the distorted 
SIN waveforms is then evaluated using the proposed 
DTWT-SSIM and Pearson-correlated metrics. The results 
presented in Table 1 reveal that except in the scaling case, 
the DTWT-SSIM is more stable than the Pearson metric, 
because the DTWT-SSIM index steadily decreases as the 
distortion increases, unlike the Pearson metric, which 
decreases sharply. 

3. TEST RESULTS 

A time series expression data similarity comparison 
experiment was performed using the regulatory gene pairs 
from [4] and [17], to demonstrate the efficiency of SSIM 
measure task in the DTWT domain. The gene pairs are 
extracted by a biologist from the Cho and Spellman alpha 
and cdc28 datasets. Filkov et al. [8] formed a subset of 888 
known transcriptional regulation pairs, comprising 647 

activations and 241 inhibitions. The alpha data set used in 
this experiment, contained 343 activations. After all the 
missing data (noise) were replaced by zeros, the known 
regulation subsets were analyzed using the proposed 
algorithm. 

 The traditional Pearson correlation and DTWT-SSIM 
analysis were performed on each pair of 343 known 
regulations. The result demonstrates that less than 11% 
(36/343) had a Pearson coefficient > 0.5 between the 
activator and activated. However, The DTWT-SSIM index 
increases the similarity between the known activating 
relationships by up to 57% (198/343). Numerous visually 
dissimilar gene pairs have a high DTWT-SSIM index. For 
instance, the Pearson correlation coefficient of genes 
YAL040C and YBR111C is -0.3885, whose time series 
expressions are shown in Fig. 2(a), but with a DTWT-SSIM 
index of 0.9796. Figure 2(b) presents the magnitude of 
lowest sub-band DTWT coefficients of genes YAL040C 
and YBR111C after the three levels of decomposition have 
been applied. Genes YAL040C and YBR111C in Fig. 2(b) 
are easily seen by eye to exhibit a regulatory relation in 
perspective of the dual-tree wavelet transform domain. 

 The number of false dismissals that occurred in the 
experiment is considered to determine the effectiveness of 
these two similarity metrics. If the margin of DTWT-SSIM 
and the Pearson metrics of the pair expression data exceed 
0.5, then the Pearson coefficient is regarded as a false 
dismissal. For instance, the DTWT-SSIM index of the gene 
pair is highly correlated with each other but the Pearson 
metric is negative or low correlated. Similarly, if the margin 
of the Pearson and DTWT-SSIM metrics of the pair 
expression data exceeds 0.5, then the DTWT-SSIM index is 
regarded as a false dismissal. 177 out of 343 pairs are false 
dismissals, based on the Pearson coefficient, while only two 
out of 343 pairs are false dismissals, based on the DTWT-
SSIM.  

4. CONCLUSION 

This study presented a new similarity metric, called the 
DTWT-SSIM index, which not only can be easily 
implemented but also enhances the similarity between 
activation pairs of gene expression data. The traditional 
Pearson correlation coefficient does not perform well with 
gene expression time series because of time shift and noise 
problems. In our dual-tree wavelet transform-based 
approach, the shortcoming of the space domain SSIM 
method was avoided by exploiting the almost shift-invariant 
property of DTWT. This effectively solves the time shift 
problem. The proposed DTWT-SSIM index was 
demonstrated to be more stable than the Pearson correlation 
coefficient when the signal waveform underwent scaling 
and shifting. Therefore, the DTWT-SSIM measure captures 
the shape similarity between the time series regulatory pairs. 
The concept is also useful for other important image 
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processing task, including image matching and recognition 
[14].  
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Fig. 1. Original signal SIN (the solid line) and distorted SIN 
signals with various scaling and shifting factors (the dashed lines). 
(a) The horizontal shift factors are 1 and 3 units, respectively. (b) 
The scaling factors are 0.9 and 1.1 respectively. (c) H. shift factor 
1 unit + V. shift 0.3 units, and H. shift factor 3 units + V. shift 0.3 
units. (d) H. shift factor 1 unit + V. shift 0.3 units + noise, and H. 
shift factor 3 units + V. shift 0.3 units + noise. (H: Horizontal, V: 
Vertical) 

Table 1. Similarity comparisons between the original 
SIN and the distorted SIN waveforms using DTWT 
SSIM and Pearson metrics. 

Fig. 2(a). Gene expression data: YAL040C and YER111C. 

   
Fig. 2(b).  DTWT magnitude of the gene YAL040C and 
YER111C. 
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