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ABSTRACT
This paper reports on a study of applying an HMM-based la-
beler along with a taylored feature extraction to Korotkoff so-
unds. These sounds can be heard through a stethoscope during
the auscultatory blood pressure measurement usually done at
medical practices. While this method works well when the pa-
tient is at rest, interfering noise from muscles and joints cause
major problems when the subject is doing any activities li-
ke sports or tness exercises. We propose a signal processing
and classi cation method to overcome these dif culties and
present rst promising results.

Index Terms— Bioengineering, Biomedical signal pro-
cessing, Korotkoff sounds, HMM

1. INTRODUCTION

The non-invasive auscultatory method is one of the most com-
mon ways of measuring the blood pressure. It is based on the
so called Korotkoff sounds (named after the discoverer [1])
which are caused by blood owing through compressed arte-
ries. While this method works very well when the subject is
at rest, the interfering sounds of muscles and joints cause dif-
culties when applying it during sports and tness activities.
There is an alternative non-invasive method, the oscillometric
measurement. However, it is also susceptible to movement of
the subject [2, 3].
This paper describes a study in which we tried to apply the

auscultatory method in combination with suitable signal pro-
cessing and classi cation algorithms for active, moving sub-
jects. Figure 1 illustrates nature and degree of interference by
movements of the subjects during the measurement. Figure
1a shows a typical Korotkoff sound at rest, gure 1b a typical
sound during some exercise.

2. METHOD

2.1. Auscultatory blood pressure measurement

There are two blood pressure values to be measured: the sy-
stolic pressure (which is the maximum pressure exerted by
the blood against the vessel walls) and the diastolic pressure
(which is the lowest pressure between two successive heart
beats).

(a) At rest

(b) During exercise (lifting a barbell while rolling the forearm)

Fig. 1. Typical Korotkoff sounds.

A pressure cuff is wrapped around the patient’s upper arm
and pumped up until the brachial artery collapses and the-
re is no ow of blood through the artery anymore. Then the
cuff pressure is slowly decreased until the blood in the artery
resumes its normal (laminar) ow. Between the systolic and
diastolic pressure there is a volatile blood ow in the vessel
whose turbulence causes the Korotkoff sound. This sound can
be heard placing a stethoscope at the patient’s hollow of the
elbow. Figure 2 shows the brachial artery and cuff pressures
evolving over time. In the grey areas the blood pressure is
greater than the cuff pressure and blood is spurting through.
It is generally accepted that there are ve phases of the Ko-
rotkoff sound which, according to [4], can be described as
follows:

• Phase I: a tapping sound,
• Phase II: a soft swishing sound,
• Phase III: a crisp sound,
• Phase IV: a blowing sound and
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• Phase V: silence.
Above the systolic pressure the vessel is squeezed off and

we cannot hear any ow sound as well. However, this is com-
monly not regarded as a Korotkoff phase.
The systolic blood pressure pS is located at the beginning

of phase I, the diastolic blood pressure pD is located at the
boundary between phases IV and V.

Fig. 2. Brachial artery and cuff pressure over time during a
blood pressure measurement.

2.2. Technical setup

For recording the Korotkoff sounds we used a specially desi-
gned and patented device [5] which automatically pumps up
the cuff to 160 mmHg and releases the pressure uniformly to
40 mmHg over a period of approximately 30 seconds. The
Korotkoff sound is recorded by two microphones integrated
into the cuff. The signals were digitized with 16 bits amplitu-
de resolution and 1 kHz sampling frequency.
We recorded 289 Korotkoff sounds of 98 subjects. 169

measurements were done at rest, 120 measurements were do-
ne while the patients did exercises (lifting a barbell while rol-
ling the forearm). The latter scenario is particularly dif cult
because this kind of exercise produces signi cant interfering
noise in the Korotkoff sounds (cf. gure 1b).
In order to obtain training and reference data for the au-

tomatic measurement procedure we had an experienced nurse
label the positions of the ve Korotkoff phases in each re-
cording. We played back the sounds through headphones and
simultaneously supplied oscillograms as a visual aid. Precise
labeling turned out to be a dif cult task, particularly for the
recordings disturbed by movements of the subjects. So we
asked our expert additionally to estimate her degree of cer-
tainty on a four point scale from 1 (certain) to 4 (guessed) for
each recording. The labels were set on the signals’ time axis.
Converting them to pressure values is straightforward as our
device realizes a linear dependency between cuff pressure and
time. So we compute the pressure simply as

pS,D =
(
−120

tS,D

T
+ 160

)
mmHg,

where T stands for the length of the recording (the signal off-
set always corresponds to a pressure of 160 mmHg, the end
always to 40 mmHg).
The automatic measurement method we propose in this

paper locates the phases of the Korotkoff sound in recordings
as described above. This is a labeling task, pretty much the
same as for instance automatic phoneme labeling of speech
signals. We train one HMM for each Korotkoff phase plus
one for the heading silence phase and then use these models
to label recordings of Korotkoff sounds. From the positions
of the labels of phases I and V we compute the systolic and
diastolic blood pressure as described above.
In order to evaluate the performance of the automatic la-

beler we compare its labels to those set by our human ex-
pert. As a measure of correctness we use the absolute diffe-
rences between the recognized and manually labeled systolic
and diastolic pressures

Δp = |pS,lab − pS,rec| + |pD,lab − pD,rec|
where pS,· and pD,· stand for the systolic and diastolic, p·,lab

and p·,rec for the labeled and recognized values. According to
[6] we consider a measurement as “correct” if Δp ≤ 20.

2.3. Feature extraction

Korotkoff sounds are mainly characterized by a sequence of
pulses of high energy (which correspond to the heart beats).
This suggests using correlation and energy based features rat-
her than the usual spectral ones. We used analysis windows of
3000 samples (3 seconds) with an overlap of 2 seconds. For
normal pulse frequencies of 60 beats per minute and higher
each window contains at least three heart beats.
We studied several analysis methods in the time and fre-

quency domains comprising a 200 channel amplitude histo-
gram, a 3 channel amplitude crossing histogram, a 100 chan-
nel autocorrelatogram, RMS, zero-crossing density, LPC squa-
re error and an 8 channel cepstrum. This results in a 314 di-
mensional feature vector. As the dimension is by far too high
for robustly estimating Gaussians we reduced it by keeping
only the 11 rst vector components after a principal compo-
nent analysis. This feature set is calledMIX1 in the following.
Secondly we hand-tuned a heuristic feature set MIX2 as

follows:
1-2 Means of the autocorrelation function for

0 ≤ τ < 0.6 and 0.6 ≤ τ < 1.2 seconds
3-4 Means of amplitude histogram bins

0.2 ≤ |x| < 0.6 and 0.6 ≤ |x| < 1 (|x| is < 1)
5-6 Means of amplitude crossing histogram bins

0 ≤ |x| < 0.011 and 0.013 ≤ |x| < 0.061
7 RMS
8 Zero-crossing density
9 Linear prediction square error
10-11 Mean of cepstral coef cients 0 ≤ q < 0.6

and 0.6 ≤ q < 1.2 seconds

Finally we computed the rst and second order difference
features of MIX2 and reduced the resulting 33 dimensional
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vectors again to 11 dimensions by means of a principal com-
ponent analysis. This feature set is called MIX2Δ in the fol-
lowing.
As a baseline feature extraction we computed a 1024-

point-FFT with non-overlapping windows of 1 s length. The
resulting feature vector was also reduced to dimension 11
through PCA to ensure a “fair” comparison.

2.4. Modeling and locating the Korotkoff sound

As described above, the recording of one auscultatory blood
pressure measurement comprises six signal phases, a heading
silence phase followed by the ve Korotkoff phases. So we
have a very simple regular grammar which can be represented
by the following nite state machine G:

With our signal classi cation system [7] we tested four
HMM topologies as shown in gure 3. The examples are all
models of Korotkoff phase I (label K-I). We always used iden-
tical topologies for all models (sil and K-I through K-V).

Fig. 3. Tested HMM topologies H1 . . .H4. Gn denote Gaus-
sians associated with the transitions.

The HMMs were trained from a set of 272 recordings by
an EM estimation (Viterbi training). The remaining 17 re-
cordings were automatically labeled. There was exactly one
Gaussian per HMM state and we used full covariance matri-
ces.
The decoding network R for the HMM labeler is:

R =
(Hsil

n ⊕HK−I
n ⊕ . . . ⊕HK−V

n

)∗ ◦ G.
The alignment of the signals on this network was done by the
Viterbi algorithm and the blood pressure values were calcu-
lated as described in 2.2. Figure 4 shows an example for the
result of the automatic labeling.

Fig. 4. Automatic labeling of a Korotkoff sound (bottom of
gure). The second channel from the bottom shows the labe-
ling result, the third channel the manually set reference labels.
The upper channel shows the neg. log-likelihood scores com-
puted for the respective signal segments.

3. RESULTS

We performed a leave-one-out cross validation (where “one”
stands for one set of 17 recordings) to obtain automatic mea-
surement results for all data.
First we conducted an experiment investigating the fea-

ture sets described in section 2.3. Throughout this experiment
we used HMM topology H1. The results are summarized in
table 1. We also tested a reference case where training and
test data were recorded when the subjects sat still. This cor-
responds to the situation at the medical practice. The second
scenario – mixed signals at rest and during exercise – is the
realistic one for our application. The results show that it is by
far the more dif cult task, too.

HMM: TopologyH1

Trained: rest mixed
Tested: rest active rest active mixed
MIX1 63.3 % 14.2 % 17.0 % 12.7 % 15.2 %
MIX2 72.2 % 25.8 % 63.7 % 28.0 % 49.1 %
MIX2Δ - - 65.1 % 30.8 % 51.2 %
FFT 64.5 % 6.7 % 47.4 % 17.8 % 35.3 %

Table 1. Correctness (Δp ≤ 20) depending on feature set.
Models were trained on signals recorded at rest and on a mi-
xed set of signals recorded at rest and during exercise. Cor-
rectness was assessed for signals recorded at rest only, during
exercise only and with a mixed test set.

Though there’s obviously plenty of room for optimization,
we can state that

• the heuristic feature set MIX2 clearly outperforms both,
the automatically selected (MIX1) and the baseline FFT
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features (we can achieve even a little further gain intro-
ducing delta features MIX2Δ),

• it does not make any sense to try labeling recordings of
active subjects with models trained with signals at rest
(3rd column),

• training models with a mixed signal set decreases the
performance for signals at rest signi cantly (column 2
vs. 4).

In a second experiment we tested the performance of the
HMM topologies introduced in section 2.4. Here were consi-
stently used the MIX2Δ feature set. Table 2 summarizes the
results.

Feature set: MIX2Δ
Correct when: Δp ≤ 20
Trained: mixed
Tested: rest active mixed
H1 65.1 % 30.8 % 51.2 %
H2 76.7 % 32.5 % 58.8 %
H3 70.3 % 41.0 % 58.5 %
H4 79.1 % 37.6 % 62.3 %
Correct when: Δp ≤ 30
Trained: mixed
Tested: rest active mixed
H1 79.1 % 43.6 % 64.7 %
H2 87.8 % 58.1 % 75.8 %
H3 88.4 % 58.1 % 76.1 %
H4 90.7 % 62.4 % 79.2 %

Table 2. Correctnesses Δp ≤ 20, 30 depending on HMM to-
pology. Models were trained on a mixed set of signals recor-
ded at rest and during exercise. Correctnesses were assessed
for signals recorded at rest only, during exercise only and with
a mixed test set.

In general we can say: the more complex the HMMs, the
better the performance. Model complexity is, however, limi-
ted by the amount of training data (which was quite small in
our tests). In the realistic scenario (column 4) we can achieve
62.3 % correctness.

4. CONCLUSION

We proposed a method of auscultatorily measuring the blood
pressure using an HMM-based labeler. Even though the re-
sults are not yet satisfactory, we were able to proof the suita-
bility of the method.
Investigating the problems we loosened the condition of

correctness to Δp ≤ 30 (lower part of table 2). That means
the automatic labels may now deviate from the manual ones
at most 15 mmHg in average of systolic and diastolic pres-
sure. Under these circumstances we achieve a 17 % absolute
higher correctness on the mixed test set. Particularly the cor-
rectness for recordings of active subjects rises drastically by

21 % absolute (column 3). It seems to be intuitively clear that
interfering noise makes it much harder to precisely locate the
beginning and end of the Korotkoff sound which are both cha-
racterized by low pulse energies (cf. gure 1).
But this is true for the human labeler as well. Especially

for the noisy signals our expert often rated her own decisi-
ons as uncertain (see section 2.2). In instances like shown in
gure 4 it’s hard to tell whether the human or machine was
more “precise”. So we must assume that the manual setting
of the reference labels was a drawback of the study. In future
work we will assess the reference by an invasive measurement
method which gives precise data or, at least, we will employ
several experts for reference labeling. This gains even mo-
re importance considering that the uncertain reference labels
were also used training the HMMs which might have com-
promised the models.
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