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ABSTRACT

This paper deals with the experimental construction, stochastic mod-
eling and statistical signal processing of a novel biosensor compris-
ing of biological ion channels. Such nano-scale biosensors are built
by incorporating dimeric Gramicidin ion channels into the bilayer
membranes of giant unilamellar liposomes and then excising small
patches of the membrane loaded with ion channels. We show that
target molecules affect the statistics of the gating mechanism of the
dimeric Gramicidin ion channels and present statistical verifications
on the adequacy of a Hidden Markov Model for modeling of the
biosensor. A likelihood ratio test is then devised to detect the pres-
ence of target molecules. To test the sensitivity of this model we
conducted patch-clamp experiments with and without the Methyl-
benzthonium Chloride compound. The real-time detection algorithm
was able to accurately detect the presence of the compound from al-
terations in the patch-clamp recordings. This algorithm provides the
sensitive detection system for ongoing development of lipid-based
nano-sensors.

Index Terms— Biomedical transducers, membrane ion chan-
nels, Gramicidin, estimation, maximum likelihood detection

1. INTRODUCTION

Ion channels are protein macromolecules commonly found in bio-
logical cell membranes that form water filled nanotubes, typically a
few Angstrom units in radius. In biological systems, ion channels
selectively regulate the flow of ions into and out of a cell. By ex-
ploiting the selective conductivity of ion channels in the presence
of target molecules, biosensors are developed to detect molecular
species of interest across a wide range of applications. These in-
clude medical diagnostics, environmental monitoring and general
bio-hazard detection. In particular, a novel biosenor, which incor-
porated monomeric Gramicidin ion channels into a tethered lipid bi-
layer membrane and exploited the changes in the association and
disassociation probabilities of the Gramicidin dimers, was published
by a coauthor of this paper in Nature. [1]
This paper deals with the construction, modeling and statistical sig-
nal processing associated with another ion channel based biosensor.
In a giant lipid vesicle, covalent dimeric Gramicidin ion channels are
incorporated by codispersion with the vesicle forming lipids. The
gating mechanism in this biosensor is thought to arise from the ran-
dom movement of excess lipid lenses in the liposome that diffuse
over the membrane surface and block the conducting channels. We
verify statistically that our Hidden Markov Model, which takes into
account of the 1/f noise in the biosensor’s response, is an adequate

model for the measured currents and can be used to derive impor-
tant biological characteristics of these dimeric bis-gA ion channels.
Using Bayesian signal processing methods on the output current of
the biosensor, a likelihood ratio hypothesis test is devised to detect
the presence of the target molecules. In the presence of the target
molecules, the stochastic model of the output current of the biosen-
sor changes. By detecting this model change in real time, we show
that the biosensor can be used in real-time target molecule detection.

2. EXPERIMENTAL CONSTRUCTION OF THE MODEL
BIOMIMETIC BIS-GA ION CHANNEL BIOSENSOR

The biosensor considered in this paper was constructed by incorpo-
rating bis-gA ion channels into the lipid bilayer membrane of giant
unilamellar liposomes and then excising small patches (1 μm in di-
ameter) of the lipid membrane using a patch-clamp micropipette.
Figure 1 shows a fluorescence image of the optical section through
the diameter of the biosensor. The solutions and chemicals used
for the biosensor included bL-alpha-phosphatidylcholine (PC) from
soybean, cholesterol, chloroform, sucrose, glucose, sodium chloride
(NaCl), potassium chloride (KCl) and 4-(2-Hydroxyethyl)piperazine-
1-ethanesulfonic acid (HEPES).

Fig. 1. Fluorescence image of biosensor’s horizontal optical section.
The Gramicidin channels are labeled using FITC and identified by
the green color.

Giant unilamellar liposomes were prepared using our recent protocol
[2] that was modified from a standard hydration procedure [3, 4, 5]
with some modifications. In brief, a completely dried lipid film con-
taining 100 μL of 10 mg·mL−1 PC with 10% (w/w) or 40%(w/w)
cholesterol in chloroform was prepared in a glass test tube as de-
scribed earlier. Rehydration of the lipid was later made at 45◦C by
the addition of a small amount of pure water (5 μL) to the tube for
a few minutes (prehydration) followed by the addition of 5 mL of
an aqueous solution of 0.1 M or 0.2 M sucrose. The tube was in-
cubated at 45◦C for 2-3 h. After gentle rocking overnight at room
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temperature, the lipid film dispersed uniformly in the solution and a
white cloud was floating in the middle of the solution, which con-
tained giant liposomes. The obtained liposomes were around 20 m
in diameter and were stable up to four days at 4◦C.
Patch-clamp electrophysiology was used to record the ionic currents
from the biosensor that resulted from permeation of ions through the
bis-gA ion channels incorporated in the lipid membrane patches that
were excised from the giant unilamellar liposomes. To perform the
patch-clamp recordings, the liposomes were allowed to settle on the
bottom of a recording chamber, which was either a 35 mm plastic
tissue-culture dish or a purpose-built recording bath fitted with the
glass cover-slip (Warner, RC13). Patch-clamp pipettes with a tip-
opening between 0.9 and 1.5 m were fabricated from special cap-
illary glass tubing (G75-1511) using an automated puller (Sutter,
P97). The patch-clamp pipette was used to excise patches of lipid
membrane from the giant unilamellar liposomes. The Gramicidin
channel currents from these membrane patches were amplified and
filtered at 1 kHz (4-pole Bessel) using an Axopatch 200B amplifier
(Axon Instruments) and sampled on-line at 10 kHz.

3. STOCHASTIC MODELING AND STATISTICAL
VERIFICATION OF BIOSENSOR RESPONSE

Suppose a patch clamp experiment is conducted with (N−1) Gram-
icidin channels in the biosensor. At each discrete time instant k, each
Gramicidin channel can be either in the “open” or “closed” state and
each open channel conducts a fixed current. Thus the total current
due to all (N − 1) ion channels at any given time can take on one
of N possible levels {μ1, . . . , μN} and can be modeled as a N -state
Markov Chain. Write μ = (μ1, . . . , μN ). Let Xk denote the total
channel current at discrete time k. Let

aij = P (Xk = μj |Xk−1 = μi), i, j ∈ {1, . . . , N} (1)

denote the transition probabilities of the Markov chain. Also let

π0(i) = P (X1 = μi), i ∈ {1, . . . , N} (2)

denote the initial distribution of the Markov Chain. Write A =
[aij ]N×N and π0 = [π0(i)]N×1. The measured current from the
biosensor is a distorted version of the signal Xk. The distortion
arises from thermal noise, the anti-aliasing effect from sampling and
an open channel noise with its power proportional to the inverse of
frequency. Thus it is also known as 1/f noise and is discussed in
other studies of Gramicidin ion channels. [6, 7]. Figure 2 shows the
power spectral density of a typical sequence of biosensor recordings
and it can be seen that the power spectrum decreases at a rate of -10
dB/dec at low frequencies and has a sharp cutoff at approximately 1
kHz. We model the noise as a Gaussian process modulated by a AR-
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Fig. 2. Power spectral density of biosensor’s response clearly shows
the 1/f open channel noise and the anti-aliasing effect in the samples.

filter H(z). Let Y (z) denote the frequency response of the noisy
observation and W (z) the frequency response of a white Gaussian
process:

Y (z) =
X(z) + W (z)

H(z)
(3)

H(z) = 1 + h1z
−1 + . . . + hMz−M

(4)

Write h = (1, h1, . . . , hM )T . It is convenient to model the noise
corrupting the state of the biosensor as state dependent noise - that
is the noise variance at any given time instant is dependent on the
state of the biosensor at that time instant. Let σ2

i be the variance of
state i, i = (1, . . . , N). Write σ2 =

�
σ2

1, . . . , σ
2
N

�
. As a result, the

observations can be formulated as a hidden Markov model sequence.
Let λ =

�
A, π, μ, σ2,h

�
be the HMM that characterizes the output

measured current from the biosensor.

4. CHARACTERIZING BIOSENSOR RESPONSE TO
TARGET MOLECULES

In this section we discuss estimation techniques to extract the model
parameters of the biosensor’s response. Statistical tests are intro-
duced to verify the goodness-of-fit of the model. Applying the esti-
mation algorithm in this section, the biosensor’s response to known
analytes can be completely characterized by the model parameters
and the detection is reduced to a classification problem.

4.1. Parameter Estimation

Given an observation sequence {Yk}, we define Lk(λ) as the log-
likelihood of our HMM λ at discrete time k. The estimation of the
model λ involves processing {Yk} through a HMM maximum like-
lihood estimator (MLE). The system in (4) can be rewritten as:

hT Yk = Xk + Wk (5)

where Yk = {Yk, Yk−1, . . . , Yk−M}. This formulation is analo-
gous to a standard HMM, except that the observation sequence is
FIR-filtered. The Expectation Maximization (EM) algorithm is an
iterative procedure that solves for local maximum of the likelihood
function. The E-step evaluates the log-likelihood, which is defined
as:

Lk(λ) =

k�
t=1

N�
i=1

γt(i) log

�
1�
2πσ2

i

exp

�−(hT Yk − μi)
2

2σ2
i

��

+

k�
t=1

N�
i=1

N�
j=1

ζt(i, j) log(aij) (6)

and the M-step maximizes the log-likelihood with respect to the
model parameter by computing the first-order derivative of the log-
likelihood function. For details about the EM estimation algorithm,
please see [8, 9, 10].

4.2. Statistical Verification

Statistical verifications plays a key role in the stochastic modeling
of the biosensor’s response. The MLE defined earlier estimates the
most likely model for a fixed topology, but we need to statistically
verify the adequacy of the estimated model by analyzing the autocor-
relations of the residuals, which are generated via a HMM one-step
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predictor:

ek|k−1 = Yk −
N�

i=1

N�
j=1

aijαk−1(i)μj −
M�

n=1

hnYk−n (7)

where αk is the forward variable defined in [10]. The residuals of
an adequately fitted model should be uncorrelated and the autocor-
relation should approach 0 as T →∞. Rather than examining the
autocorrelation at each lag, the Ljung-Box Q-statistic, defined in (8),
computes the cumulative sum of autocorrelations at the first L lags
and is used as a portmanteau lack of fit test for model adequacy.

Q = N(N + 2)
L�

l=1

r2
l

(N − l)
(8)

where r2
l is the autocorrelation of the residual at lag l. It is shown

in [11] that for an adequate model, the Q-statistics of the residual is
approximately distributed as χ2(L).

5. ANALYTE DETECTION USING MLR TEST

Given a sequence of response observed in unknown condition, the
detection problem involves the identification of the condition that
most likely contributes to the biosensor’s response. This is a model
classification problem and can be solved by comparing the likeli-
hood of each known model. We devise a likelihood ratio hypothesis
test that detects the presence of an analyte. Let Y = (Y1, . . . , YT )
be a sequence of observed response of the biosensor. Let θ1 be the
condition with no analyte present and θ2 be the condition with ana-
lyte present. For i = 1, 2, let λi be the estimated model for θi. At
each time point k, the sequence Y behaves according to model λ1 or
λ2.

5.1. Filtered Likelihood

For each estimated model λi, the log-likelihood at each time point
Lk can be computed from (6). To make the detection more robust
to nonstationary disturbances and outliers in the measurements, we
apply a geometric moving-average filter to the log-likelihood. Let ρ
be the forgetting factor, 0 < ρ < 1. Define the filtered likelihood at
time k:

Sk(λ) =

�
L1(λ) for k = 1
(1 − ρ)Sk−1 + ρLk(λ) for 2 ≤ k ≤ T

(9)

The filtered likelihood is a weighted sum of the likelihood of the
entire sequence {Y1, . . . , Yk}, with higher weights on the recent ob-
servations.

5.2. Likelihood-Ratio Test

The likelihood-ratio test is formulated as a hypothesis test and rewrit-
ten as:

H0 : Yk ∼ λ1 versus H1 : Yk ∼ λ2 (10)

where H0 is the null hypothesis that no analyte is present and H1 is
the alternative hypothesis that analyte is present. Assume a uniform
prior on the hypotheses, it can be shown that the optimal decision
rule δ is:

δ =

���
��

0 if
P (Yk|λ1)

P (Yk|λ2)
> 1

1 if
P (Yk|λ1)

P (Yk|λ2)
< 1

(11)

or equivalently,

δ =

�
0 if ΔSk > 0
1 if ΔSk < 0

(12)

where δ is the index of the accepted hypothesis and ΔSk = Sk(λ1)−
Sk(λ2) is the difference in filtered likelihood.

6. EXPERIMENTAL RESULTS

Here we report on the performance of the detection algorithm and
biosensor on actual experimental data. We recorded output from the
model biosensor by measuring the activity of the bis-gA ion chan-
nels incorporated into the small lipid membrane patches that were
excised from the unilamellar giant liposomes. Bis-gA ion channels
were incorporated into the unilamellar giant liposomes at a concen-
tration of 1/100 from a 66nM stock solution. We used 0.5 M KCl
solution in the recording pipette with the microparticles suspended
in a 0.5 M NaCl solution.

6.1. Model Estimation and Verification of Biosensor Current

Figure 3 shows a short sequence of observed currents. The sequence
is fitted to our model with two-state HMM with an AR-12 filter. The
model parameters are estimated with the MLE and listed in Table
6.1. The most likely conductance level sequence, extracted from the
HMM procedure, is plotted in Figure 4. Residuals of the model are
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Fig. 3. Time sequence of biosen-
sor recordings
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Fig. 4. Maximum likelihood es-
timate of individual conductance
level
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Fig. 5. Q-statistics of residuals
vs critical value of Ljung-Box
test
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Fig. 6. Biosensor response to the
addition of MBC

generated using the HMM one-step predictor. The Q-statistics of the
Ljung-Box test are computed for the first 15 lags. Figure 5 shows
that for the first 13 lags, the Q-statistics of the residuals are below
the critical values of the chi-square distribution at 0.05 significance
level. In other words, our model is adequate in modeling the linear
dependencies that exist in the biosensor’s response.
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Transition Conductance Level Variance
Probabilities (pA) (pA)2

0.9964 0.0036 5.831 0.513

0.0006 0.9994 3.057 0.371

Table 1. Estimated parameters of sequence in Figure 3.

6.2. Real-Time Detection of Analyte

In this section we illustrate the performance of the algorithm in de-
tecting the presence of an analyte in real-time. Patch-clamp experi-
ments are conducted with and without Methylbenzthonium Chloride
(MBC) in the bath solution. The compound MBC, shown in Figure
7, is synthesised by AMBRI Pty Ltd to inhibit the conduction of ions
in the bis-gA ion channels. Using the MLE, the detection program is
trained offline to model the biosensor’s response. To simulate the ad-
dition of MBC into the bath solution, we merge together a sequence
recorded with no analyte with a sequence recorded with MBC. The
change point occurs at k = 57793. From the time series plot of the
merged sequence in Figure 6, it is extremely difficult to the change
point where the MBC compound is added.

Fig. 7. Chemical structure of Methylbenzthonium Chloride (MBC)
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for λ1 and λ2
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Fig. 9. Detection trace δ is com-
puted from the filtered likelihood
ΔSk.

Using the parameters in the estimated models λ1 and λ2, The fil-
tered likelihoods Sk(λ1) and Sk(λ2) are computed with the forget-
ting factor ρ = 0.005 and the difference, ΔSk = Sk(λ1)−Sk(λ2),
is plotted in Figure 8. When comparing the detection trace with the
actual experimental condition in Figure 9, The detection trace indi-
cates a switch in the most likely model from λ1 to λ2 at k = 59865,
approximately 0.2 seconds after the change point.

7. CONCLUSION

This paper has described the stochastic modeling and detection al-
gorithm of an ion channel based nano-biosensor. The biosensor
comprises dimeric Gramicidin ion channels incorporated into small
patches of bilayer membranes that were excised from giant unilamel-
lar liposomes. We showed and verified statistically the stochastic
modeling of the gating mechanism, caused by random movement of

excess lipid lenses in the liposome, and the 1/f noise in the patch-
clamp recordings. Based on the HMM, we devised a likelihood ra-
tio test to detect target molecules. Our experimental results show
that the biosensor together with the likelihood ratio test results in a
highly sensitive detector that can detect the presence of MBC, a com-
pound known to inhibit the permeation of ions through the bis-gA
ion channels. This detection algorithm provides a sensitive means
of detecting alterations in the ion channel activity, and allows further
development of this lipid-membrane based biosensor that utilizes ion
channels as the readout for binding of analytes to the biosensor.
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