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ABSTRACT
In this paper we present a simple and fast technique for
correcting high amplitude artifacts that contaminate EEG
signals. Examples of such artifacts are ocular movement,
eye blinks, head movement, etc. Since the measured EEG
data can be modeled as a linear combination of brain
sources and artifacts, the proposed technique is based on
multiplying the observed data matrix by a blocking matrix
that has the effect of blocking high amplitude artifacts,
while linearly transforming the other sources without any
distortion. The advantages of using this technique are 1) it
is relatively fast, so it can be applied in real time, 2) it is
completely automatic, and 3) can be successfully applied
to signals which fail with ICA-based algorithms.
Indexing Terms: Electroencephalogram (EEG), artifact
removal.

I. INTRODUCTION
The electroencephalogram (EEG) is a noninvasive mea-

sure of brain electrical activity. These measured signals can
be used as a clinical tool for studying the nervous system,
monitoring of sleep stages, and diagnosing diseases such as
epilepsy. Unfortunately, artifacts such as head movements,
electromyogram (EMG) and electrocardiogram (ECG) sig-
nals contaminate the EEG signal. As a result, it is usually
dif cult to relate EEG measurements to the underlying
brain process or to localize the sources of the EEG signals.
Therefore, artifacts must be removed from the EEG signals
before analysis. This is typically done manually, and as
such is a very time consuming and tedious process. Thus,
there is a need for this process to be automated.
Mathematically, the measured data at instant t can be

related to their original sources through the following linear
relation [4]:

xt = Ast + vt, t = 1, . . . , T (1)

where xt is the measured data vector of dimension M
at time t where M is the number of electrodes, st is
the vector whose elements are the N sources sampled
at time t, A is a M × N mixing matrix, vt is additive
Gaussian noise, and T is the total number of samples. In
addition to brain sources, the vector st contains artifacts,
which wish to remove. Over the past decade, there has
been a lot of research effort directed towards removing
these artifacts. Most of the proposed methods are based on
applying either principal component analysis (PCA)[5], or
independent component analysis (ICA) [4].

In this paper we concentrate only on automatic removal
of high-amplitude artifacts. Although PCA- and ICA-based
algorithms can be used to handle this problem, they suffer
from the following limitations; 1) they assume that M ≥
N , which may not be the case when a small number of
electrodes are used. In addition, generally, the number of
sources are unknown; 2) they cannot be applied to remove
artifacts automatically, 3) the sources must meet certain
assumptions such as statistical independence, which may
apply for artifacts but is questionable for brain sources,
and 4) they cannot be applied in real time because of
the delay involved in separation, identi cation, and then
restoration. In addition to the above mentioned limitations,
there are some situations where both PCA- and ICA-based
algorithms fail, e.g, example 2 in Section IV.

The rest of the paper is organized as follows: in Section
II an overview of some automatic artifact rejection and
correction algorithms based on ICA and PCA is presented.
The proposed algorithm is presented in Section III, and
two examples are presented in Section IV in order to
demonstrate the ef ciency of the proposed algorithm in
separating high-amplitude artifacts. Finally we conclude
our work in Section V.
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II. AUTOMATIC ARTIFACT REJECTION AND
CORRECTION

Recently, techniques have been developed to automate
the process of artifact removal [1], rejection [3], or cor-
rection [5]. In [1] a technique for automatic rejection of
artifacts was proposed. The proposed technique was based
on dividing the whole data set into contiguous windows,
then statistical tests on each window were applied. If the
artifact was detected at any channel in any window, all
data in this window is marked for rejection. Although
this technique works ef ciently in identifying artifacts,
rejection of the whole data inside the marked window has
drawbacks because some useful data in the uncontaminated
channels within this marked window are lost.
In [3] the authors proposed using ICA with a reference

signal. This technique is based on extracting sources that
are statistically independent and are constrained to be sim-
ilar to the given reference signal. Although this technique
was applied successfully in rejecting ocular artifacts, it is
not on–line, and the original signals have to be examined
rst in order to select a suitable reference signal. These
limitations make this technique unsuitable for real time
automatic rejection and correction of ocular artifacts.
In [5] PCA was applied to separate the EEG signals

into uncorrelated components. Then for each separated
component, tests were applied in order to identify whether
this component is an artifact or not. If the separated com-
ponent is marked as artifact, the whole component is set
equal to zero, then the corrected EEG signals are restored
by multiplying these corrected sources by the inverse of
the separating matrix. Although this technique may work
faster than the previous one, the rejected component, which
corresponds to the artifact, may contain some EEG signal
at instants where the artifact does not occur. This means
that the restored artifact-free EEG signal is distorted.
From the above discussion it is clear that each of these

techniques has its own limitation which prevents it from
being suitable for real time automatic correction of high
amplitude artifacts. In the next section we present a simple
and ef cient technique that can be applied in real time to
automatically correct artifacts with large amplitude.

III. THE ARTIFACT-BLOCKING ALGORITHM
The proposed algorithm corrects the measured EEG data

on–line, rather than separating it rst into its individual
components as in PCA and ICA, as mentioned in the previ-
ous sections. In the light of the mixing model described by
(1), let us assume that the i-th source is a high-amplitude
artifact while the others are brain sources in addition to
low-amplitude artifacts. Then (1) can be written as:

xt = aisi +
N∑

j=1
j �=i

ajsj , t = 1, . . . , T (2)

Fig. 1. The blocking matrix B can be calculated by minimizing
‖y − Bx‖.

where ai is the i-th column of the mixing matrix A and si

is the i-th source. If xt is multiplied by a matrix B such
that Bai = 0, i.e. B is constructed so that ai is in the
nullspace of B, then we will get a new mixture x̃t that
is a linear function of the brain and low-amplitude artifact
sources only, that is:

x̃t =
N∑

j=1
j �=i

ãjsj , t = 1, . . . , T (3)

where ãj = Baj . To calculate B we consider the block
diagram shown in Fig. 1. In this gure, the threshold
function is de ned as

y =
{

x, |x| ≤ θ
0, otherwise, (4)

where y is the threshold function output and θ is a
threshold. θ is adjusted such that it is larger than the
nominal brain signal’s amplitude but less than the artifact
amplitude. The output of this threshold function will not
contain any information about any high-amplitude artifacts
in the signal. The optimal value of B, denoted as Bopt
is given as the solution to the following optimization
problem:

Bopt = arg min
B

E‖Bxt − yt‖2
2 (5)

where E is the expectation operator. The B satisfying (5)
ensures that large signals exceeding the threshold (i.e., arti-
facts) are blocked, since the corresponding y is mostly zero
in these intervals. However, for small signals, for which
y = x, the output is an undistorted version of the input.
Moreover, since the artifact occurs over a small duration
of time, the minimization of (5) can be calculated over
small windows rather than over the whole data set. The
whole data length T is divided into contiguous windows
each with length Tw , and we assume that there is only
one high-amplitude artifact that can occur in each window.
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Since (5) is a linear least–squares problem, the solution is
straightforward and is given in closed form by

Boptj = RyxjR−1
xxj , j = 1, . . . , Nw (6)

where Boptj is the blocking matrix in the j-th window,
Ryxj is the cross correlation function between y and x in
the j-th window, Rxxj is the autocorrelation function of
the input data x in the j-th window, and Nw is the total
number of windows. In the j-th window, Ryxj and Rxxj

can be calculated as:

Ryxj =
1

Tw

jTw∑
t=1+(j−1)Tw

y(t)xT (t), (7)

Rxxj =
1

Tw

jTw∑
t=1+(j−1)Tw

x(t)xT (t). (8)

As a comparison between the proposed algorithm and ICA-
based algorithms used for removing ocular artifacts, for
instance, it was stated in [6] that ocular artifact correction
using ICA distorts the power in the recovered signal
between 5 and 20 Hz . The reason for this distortion is that,
by using ICA, the separated component that corresponds
to the ocular artifact contains leakage brain signals at the
instants where the artifact does not occur, which means
that removing this component will not only remove the
ocular artifact but also remove some brain signals. On the
other hand, from (6) we note for those windows that do
not have artifacts, we have Ryx = Rxx which means that
the blocking matrix Boptj over these windows equals the
identity matrix. As a result, the blocking matrix will affect
the data only if the j-th window is contaminated with the
artifact.

IV. SIMULATION RESULTS

In this section we present two examples to demonstrate
the ef ciency of the proposed technique in removing
artifacts that have high amplitude. The EEG data were
collected using 20 electrodes placed according to the
International 10-20 System. The sampling frequency was
205 Hz, and an average reference was used. In these
examples the threshold θ was set to 50μv.
Example 1: In this example we set Tw = 100 samples.

This example is presented to demonstrate the ef ciency of
the proposed technique in removing ocular artifacts. Fig.
2a shows 5 sec. of EEG data contaminated with an ocular
artifact between the 7-th and 8-th second. The corrected
data are shown in Fig. 2b. Clearly the ocular artifact has
been successfully removed without any distortion to the
data outside the windows at which the artifact occurs.
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Fig. 2. (a) 5 seconds of EEG signals contaminated with ocular
artifact, (b) The corrected EEG signals using AB algorithm

Example 2: In this example we set Tw= 1 sec. =
205 samples. This example is presented to show how the
proposed algorithm deals with artifacts that ICA algorithms
have dif culty with. The EEG signals shown in Fig. 3a
contains high-amplitude artifacts that drive the ampli er
into saturation on some channels. The usual way to deal
with this kind of artifact is to chop it out, but this is
not the best choice because there are brain signals on
some channels that may still be useful. In this example we
compare the recovered signals using the proposed artifact-
blocking (AB) algorithm with those obtained using ICA.
The ICA algorithm used here is fastICA algorithm [2]. Fig.
3b shows the separated components using fastICA. As we
can see in this gure, artifacts appear in many components,
mainly components 2, 3, 4, 7, 8, 10, and 11, rather than in
one component as desired. In addition, these components
still have brain signals outside the interval at which the
artifacts occur, so a lot of data will be lost after rejecting
these components. After removing these components, the
corrected signals are shown in Fig. 3c. On the other hand,
Fig. 3d shows the corrected signals using AB algorithm.
As we can see in this gure, in the region where the
artifact occurred, the algorithm has approximately similar
performance as fastICA. However, unlike fastICA, it may
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Fig. 3. (a) 5 seconds of EEG signals contaminated with a
clipping artifact (b) The separated components using fastICA (c)
corrected EEG signals using fast ICA (d) corrected EEG signals
using the AB algorithm

be observed there is no change in the recovered data at
instants where the artifact does not occur.

V. DISCUSSION AND CONCLUSIONS
In this paper we propose a simple and fast algorithm that

can automatically remove artifacts (such as ocular move-
ment and eye blinks) with high amplitude. Artifacts with
lower amplitude cannot be removed with this algorithm;
however, that may not be of great consequence because
low–amplitude artifacts have a less confounding effect on
the desired brain signals than do large–amplitude artifacts.
In addition to its simplicity, the proposed algorithm is
successful with certain types of signals that other ICA
based algorithms fail to deal with. Since the proposed
algorithm corrects EEG data directly, it does not require
any assumptions about the number of sources or whether or
not they are statistically independent. Finally, the proposed
algorithm is fast enough to be applied in real time with a
reasonably powerful computer.
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