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ABSTRACT

Our purpose is to study how different muscles collaborate together
to efficiently create a smooth, coordinated reaching movement. In
the EMG literature, it has been commonplace to model the rela-
tionships between muscles using correlation and frequency-based
measures such as coherence. Inspired by the observation that mu-
tual information is a more general and reliable metric in reveal-
ing complex relationships between time series, we propose a rele-
vance network framework for modeling temporally-aligned multi-
variate sEMG recordings. Such a network can identify functional
muscle associations, providing insights into the underlying motor
behavior. Here we demonstrate that relevance networks can: 1) de-
tect the effects of handedness in normal subjects, and 2) robustly de-
tect between the healthy and stroke subjects. Specifically, the struc-
tural features of muscle associations were sensitive to handedness
and disease status yet relatively robust to differences across subjects
– a longstanding goal in rehabilitation research. These results war-
rant further study to more fully determine the extent to which the
Relevance Networks may elucidate the complex muscle interactions
in reaching movements.

Index Terms: Biomedical signal analysis, reaching movement, rele-
vance network, mutual information, muscle association.

1. INTRODUCTION

Analysis of simultaneously-recorded surface electromyographic (sEMG)
signals is a topic of increasing research importance in the area of mo-
tor behavior. Although traditionally sEMG recordings have been ex-
amined in univariate fashion, it is well-known that sEMGs recorded
from spatially distributed muscles may be correlated with each other
[5]. Studies in muscle synergies suggest that the muscles are acti-
vated in a carefully coordinated fashion [6]. Therefore, a key chal-
lenge in motor control is to understand how different muscles collab-
orate together to efficiently create a smooth, coordinated movement.

To address this question, it has been investigated in the EMG
literature to model the relationships between muscles using corre-
lation and frequency-based measures such as coherence. However
such measures are easily distorted by outliers, potentially biasing
the estimates of muscle association. To better represent the synergy
associations (or dependency patterns) between muscles, we propose
to explore the relevance network (RN) framework for modeling mul-
tiple muscles, as this technique has been used successfully to model
genetic regulatory networks [2]. We focus on utilizing mutual in-
formation (MI) to generate a relevance network, as MI is a more
general, reliable metric in revealing complex relationships between
time series. We also focus on addressing the issue of inter-subject
variability, a fundamental research topic in rehabilitation science, by
investigating the structure features of trained RNs in cross-subject

classification. To our knowledge, this is the first work attempting to
apply the concept of RN to model muscle associations and address
the inter-subject variability using network structure features.

The paper is organized as follows. In Section 2, we describe
the relevance network framework for learning muscle networks. A
real case study involving sEMG recordings from normal and stroke
subjects is described in Section 3. Finally, we conclude our paper
with suggestions for future work.

2. METHODS

In this section, we first introduce the experimental procedure for
recording sEMG data. We then describe the so-called mutual infor-
mation relevance network approach, a technique that computes com-
prehensive pair-wise mutual information for all muscles in a sEMG
data set, to identify functional muscle-muscle associations and thus
generate a network of muscle associations during reaching move-
ments. We also discuss the method for cross-subject classification.

2.1. sEMG Data Collection

In total, 20 stroke and 10 healthy subjects with ages ranging from
49 to 72 years were recruited. The severity of motor impairment of
the paretic arm was assessed by upper extremity motor component
of the Fugl-Meyer (FM) scale and by the Modified Ashworth Scale
(MAS). During the test, each subject was first seated in a chair with
their hands on the thigh and was instructed to reach and touch a fixed
target after hearing an auditory cue. For every subject, the reaching
movements were repeated five times on each side.

The electrical activity of seven muscles (the anterior and lat-
eral deltoid, the triceps (long head and lateral), the biceps brachium,
latissimus dorsi, and the brachioradialis) was recorded using surface
electrodes. A bipolar montage was used to minimize the effect of
crosstalk. The 7-channel sEMG signals were amplified, resampled
at 600 Hz, and high-pass filtered at 20Hz. Pleaser refer to [4] for
further experimental details.

2.2. Mutual-Information Based Relevance Network

Similar to the relevance network proposed in [2] for functional ge-
nomic studies (e.g. analyzing the functional gene clusters), our ba-
sic idea is to take data sets of sEMG measurements under differ-
ent reaching movement conditions and generate networks of muscle-
muscle interactions by performing pair-wise mutual information for
all muscles. The relevance network for modeling associations among
muscles includes two major components as follows:

• Calculating mutual information to evaluate muscle-muscle as-
sociations: Mutual information is a measure of the additional
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information known about one random variable when given
another. Let X and Y be two random variables, the mutual
information is expressed as

I(X,Y ) = H(X)−H(X|Y ), (1)

where H(X) means the entropy of a random variable X and
H(X|Y ) means the conditional entropy. Since entropy is
measure of the information content in a random variable, from
its definition, the mutual information is a natural measure of
the dependence between random variables. It is always non-
negative, and zero if and only if the variables are statistically
independent. A higher mutual information between two mus-
cles means that one muscle is non-randomly associated with
the other. Thus the pair-wise mutual information takes into
account the dependence structure of the two muscles and can
be used as a metric between two muscles to represent their
degree of independence. We believe that the higher a pair-
wise mutual information is, the more likely the two muscles
have a coordination/association relationship.

In this study, assuming the discrete distributions, the pair-
wise MI is calculated as

I(X,Y ) =

lx�

i=1

ly�

j=1

Pr(xi, yj)ln
Pr(xi, yj)

Pr(xi)Pr(yj)
, (2)

where lx and ly are the number of discrete values the variable
X and Y can take, respectively. The above distributions are
estimated using the corresponding histograms of the observa-
tions.

• Choosing a threshold and constructing relevance network cor-
respondingly: Based on the M sEMG channel measurements
(e.g. M=7 in our case), the electrical activity of all M mus-
cles are compared against each other, resulting in M(M-1)/2
total pair-wise calculations of mutual information. Since it
is biologically implausible to assume a fully connected net-
work, we address this issue by setting a suitable threshold of
mutual information (TMI) and reporting only those links be-
tween muscles that the corresponding pair-wise mutual infor-
mation exceed the threshold. Setting an appropriate threshold
warrants further consideration. One approach is simply to
sort all the values of the pair-wise mutual information choose
the largest N to represent the network. An alternative ap-
proach, similar to [2], is to utilize random permutations to
estimate the MI values expected by chance and, based on this
generated null distribution choose a suitable threshold. In this
approach, the sEMG data are permutated n times (e.g. n=30)
and a distribution of the new pair-wise mutual information is
calculated. We utilized the latter approach.

So far, we did not consider the temporal information embedded
in sEMG. Since sEMG are time-series data, and causality may exist
between muscles as measurement of one muscle at time t could be
associated with another muscle at a future time (t+ τ), we intend to
introduce temporality into Relevance Networks and take temporality
into consideration in identifying the associations between muscles.
To address this causality concern, we can calculate the mutual infor-
mation by including the time factor. More specifically, for each pair
of muscles, we determine the time-delay τ by

τ̂ = max
τ

I(x(t), y(t + τ)). (3)

Definite maxima in the above equation may imply that the estimated
delay τ can be used to assign the causality relationship between pair-
wise muscles.

2.3. Cross-Subjects Classification

A fundamental research topic in rehabilitation science is the diffi-
culty in quantifying ”recovery” after, e.g., stroke. Inter-subject vari-
ability of recovery patterns complicates the ability to derive robust
disease measures. To address this concern, an efficient and robust
cross-subject classification method is needed. For instance, we may
be interested in detecting whether a subject has an arm reaching pat-
tern similar to stroke subjects and may want to estimate the severity
of stroke from sEMG data. We believe that certain features of trained
RNs are suitable candidates to serve this purpose and further to mon-
itor recovery.

Since the RNs reveal the graphical features between muscle nodes,
structure features of RNs (e.g. whether an edge exists or not) can be
used as the input classification features for a given classifier. Based
on the learned RN, we represent the input features by a binary vector
with length n, where nmeans the total number of possible pair-wise
connection edges, and each element value 1 means an edge exists.
For instance, since 7 muscles are considered in our problem, we have
n = 21 representing all possible pairs. In this study, a classification
tree (CT), also known as decision tree because decisions about class
membership are represented at the leaf nodes, is chosen to classify
the binary vectors. Classification trees have been proposed in statis-
tics, artificial intelligence, and machine learning [7]. Classification
tree is learned through a binary recursive partitioning process, which
is an iterative process of splitting the data into partitions. We choose
a CT as our classifier because of two reasons: first, CT is especially
suitable for categorical data as an adjacent matrix is in our problem;
secondly and most importantly, CT is a good choice when the goal
is to generate rules that can be easily understood and explained, and
its meaning can be explicitly interpreted in terms of muscle interac-
tions, as in our case. A CT selects the most informative features and
explicitly gives the conditions of predicting an input be to a class.
Based on our categorical input vector (e.g. binary in our case), CT
is built by selecting those pair-wise interactions that are most impor-
tant in determining an outcome, and then is used to assign/predict
the class membership of coming inputs. CT can also provide the
measure of confidence that the classification is correct.

To prevent over-fitting the data, the performance of RN-based
classifiers were evaluated with cross-subject validation. The strat-
egy of cross-subject validation is illustrated in Fig. 1. In our ex-
periments, each subject was asked to perform a reaching movement
several times with each side of arm. In cross-subject validation, the
trials of one arm side of one subject are left aside as the testing data,
and all the other data are used to train a classifier which then is used
to predict the stroke state and hand dominance of the testing subject.
The testing trials all have the prediction results and they vote which
group type the tested data set belongs to. In this way, all the trials of
each arm being tested are used to predict its group membership. This
procedure is repeated and each time a different subject arm side is se-
lected as the testing data. Cross-subject validation evaluates whether
data sets of the same group type share common features while data
sets of different group types have distinguishing features.

3. RESULTS

In this section, we study the performance of the proposed relevance
network approach by examining the sEMG data collected during the
reaching movements. Our purpose is to investigate whether cer-
tain muscle associations and dependency patterns revealed by MI-
based RNs are consistently different between the dominant and non-
dominant hands of subjects, and between healthy and stroke sub-
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Fig. 1. The procedure of leave-one validation in cross-subject clas-
sification.

jects.

3.1. MI-based RNs

Since each reaching movement was repeated 5 times by each sub-
ject, we explored the reliability of the proposed idea by investigating
the consistency in the computed networks. From our results, it is en-
couraging to note that the derived structures of each trial are similar,
and demonstrated trial-to-trial reliability. Therefore, in the following
we concatenate data from all 5 trials together and report the overall
learned network.

We compare the learned relevance networks in Figure 2. The
three networks are of the same task, but for different subjects and
arms. We can see that, for all three networks, the muscle 1-and-7 as-
sociation (i.e. the association between Anterior Deltoid and Lateral
Deltoid) has the largest MI value, as would be expected as they rep-
resent two heads of the same muscle. Comparing Figure 2A and 2B,
we note that the dominant and non-dominant sides share some ma-
jor association patterns, although there are more muscle associations
observed in the dominant side. Also, muscle 3 (Triceps:Long Head)
seems playing a more important role in the dominant side, indicating
a more complicate muscle collaboration pattern in the dominant side
for a healthy subject.

To get some insight into the pattern difference between healthy
and stroke status, we compared Figure 2A and C. For the domi-
nant arm, the healthy subject indicates more associations than that of
the stroke subject (i.e. the more affected arm), which suggests that
stroke may damage the cooperation of muscles, especially of mus-
cle 6 (Latissimus Dorsi). An interesting observation about muscle 3
(Triceps: Long Head) and 4 (Triceps: Lateral) may suggest a possi-
ble alternative strategy in stroke patients. In Figure 2A, muscle 3 is
connected with many muscles while muscle 4 is lightly connected.
From Figure 2C, certain connections with muscle 3 are missing in
stroke, while in stead muscle 4 plays a more significant role in the
movement task.

We also proceed to assign causality between muscles by tak-
ing the temporal information into consideration. For example, the
time-delay between Muscle 2 and 7 is estimated as -2, meaning that
Muscle 7 at time t is associated with Muscle 2 at a future time (t+2).
This is reasonable since muscle 7 (lateral deltoid) is a more proxi-
mal muscle than muscle 2 (biceps). Using the dominant side of the
healthy subject as one example again, we note that more links are
identified if the same MI threshold 0.09 is used.

Table 1. The error rates of cross-subject classification by using pair-
wise edge features as the classification feature inputs.

No. of edges 1 2 3

HD vs. HNd 0.28 0.22 0.16

HD vs. SD 0.14 0.07 0.00

HNd vs. SNd 0.29 0.18 0.12

SD vs. SNd 0.15 0.08 0.08

3.2. Cross-subject classification

In this study, we are interested in the effects of two factors on mus-
cle association patterns revealed by sEMG recordings, namely stroke
status and hand dominance. Therefore, the sEMG recordings were
grouped into four experimental conditions: healthy dominant case
(i.e. notated as HD), healthy non-dominant case (i.e. notated as
HNd), stroke involving the dominant hand case (i.e. notated as SD),
and stroke involving the non-dominant hand case (i.e. notated as
SNd). To study the effects of different factors, we explore four pair-
wise cross-subject classifications. The comparisons, HD versus HNd
and SD versus SNd are studied to examine the effect of hand dom-
inance; and the comparisons, HNd v.s. SNd and HD v.s. SD, are
studied to examine the effect of stroke status. To have a fair com-
parison, for each sEMG sample, top 10 edges are used to build a RN
representing the particular reaching movement operation.

For each classification problem described above, a classification
tree was built based on the structure features of RNs. For simplicity
and for avoiding possible over-fitting, we restricted that the classi-
fication trees use no more than three elements (i.e. three pair-wise
connection features from the input feature vector). The cross-subject
classification performance was shown in Table ?? by using the leave-
one cross-validation. A subset of edges of RNs represented by a bi-
nary vector are used as the inputs to a classification tree to classify
two experimental groups characterized by different hand dominance
and stroke status. The performances (from the second row) of the
best subsets composed of a certain number of edges (the first row)
are reported. For the detail of the best classification trees, please
refer to Fig. 3. It is noted that classification trees based on the struc-
tures of RNs can classify well the four types of experimental groups.
Also, it is noted that, as the number of the used edge features in-
creases from one to three, the classification error rate decreases. Us-
ing 3 edge features seems a good choice in this study.

(a) HD vs. HNd (b) HD vs. SD

Fig. 3. The best classification trees by using three RN edge structures
as the classification features. For each node, a label specifies its
group membership. For a branch, its label is the decision rule. For
the performances of these trees, please refer to Table 1.
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Fig. 2. The examples of learned relevance networks. The solid lines indicate the shared links between all networks, and the dashed lines
indicate the special links for each network. For comparison, for each network, the largest 4 MI values are marked in the plots. The index of
muscles are as following: 1-Anterior Deltoid, 2-Biceps Brachium, 3-Triceps:Long Head, 4-Triceps: Lateral, 5-Brachioradialis, 6-Latissimus
Dorsi, and 7-Lateral Deltoid.

As an illustrative example, assuming using three edge features,
examples of the best classification trees for the pair classification
problems are illustrated in Figs. 3. In the figures, for each branch
node, the left child node corresponds to the satisfying condition (i.e.
YES condition), and the right child node corresponds to the un-
satisfying condition (i.e. NO condition). The index such as M1
means Muscle-1. These trees include connections between agonist-
antagonist pairs (e.g. long head of triceps, biceps), muscles with
similar actions (e.g. biceps, brachioradialis), and muscles with no
obvious similarity of function but might be part of larger synergies
(e.g. brachioradialis and latissimus dorsi).

In contrast, Fig. 4 shows that even the amplitude of the most
distinguishing muscle cannot easily separate the four experimental
groups. Yet most of current studies on sEMG emphasize the am-
plitude of one muscle for classification. Our classification trees are
based on the “carrier” signal (see subsection ??) which is usually
lost by the traditional rectification, smoothing and other preprocess-
ing methods, but they perform very well and offer visible interpreta-
tions. The impressive classification performance is unlikely related
to over-fitting because the error rate is estimated with cross-subject
validation. This cross-subject classification results also indicate that
the MI-based RN can be a promising tool to examine the sEMG
recordings.

4. CONCLUSION

Performing a reaching task is a complex coordination between mus-
cles. By calculating comprehensive pair-wise mutual information
between muscles, a relevance networks can be constructed by dis-
playing links above a threshold to find functional muscle associa-
tions during reaching movements. We have demonstrated significant
effects of handedness in normal subjects. By applying the relevance
network approach to sEMG recordings from reaching movements
in stroke subjects, we notice certain muscle association and depen-
dency patterns are consistently different between the healthy and
stroke subjects. These results warrant further study to more fully
determine the extent to which Relevance Networks may elucidate
the complex muscle interactions in reaching movements.
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