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ABSTRACT

We describe a computational framework that models 
spatial structure along the genomic sequence 
simultaneously with the temporal evolutionary path 
structure and show how such models can be used to 
discover new functional molecules through cross-
genomic sequence comparisons. The framework 
incorporates a priori high-level knowledge of structural 
and evolutionary constraints in terms of a hierarchical 
grammar of evolutionary probabilistic models. In 
particular, we demonstrate a novel computational method 
for identifying novel prohormones and the processed 
peptide sites by producing sequence alignments across 
many species at the functional-element level.  We present 
experimental results with an initial implementation of the 
algorithm used to identify potential prohormones by 
comparing the human and mouse proteins, resulting in 
high accuracy identification in a known set of proteins 
and a putative novel hormone from an unknown set. 
Finally, in order to validate the computational 
methodology, we present the basic molecular biological 
characterization of the novel putative peptide hormone, 
including identification in the brain and regional 
localizations. The success of this approach will have a 
great impact on our understanding of GPCRs and 
associated pathways, and help us identify new targets for 
drug development. 

Index Terms— evolutionary HMM, peptide hormone,  
hierarchical grammar

1. INTRODUCTION 

Evolution provides a vast array of clues for the discovery 
of functional proteins encoded in the genome. The 
genomic sequences, depending on the functionality of the 
structures they encode, get preserved or diverge in 
nonuniform ways across species genome [1, 2]. As the 
number of complete genomes builds up, a more complete 
picture of how evolution has operated on the principal 
biological structures emerges. Hence, biological 
sequence analysis techniques that are informed by 
phylogenetics in modeling specific functional structures 
become more compelling approaches to understanding 
the biological systems involved [3]. This paper describes 
a computational framework that models spatial structure 
along the genomic sequence simultaneously with the 

temporal evolutionary path structure. We demonstrate 
that this framework can be used to explore the 
dependencies among the genomes of several species and 
discover new functional molecules, in particular 
prohormones and the associated peptide hormones. The 
computational framework, which we name HIGHER:
HIerarchical Grammar of Hidden markov models of 
Evolutionary Regions, uses probabilistic models that 
incorporate a priori high-level knowledge of structural 
and evolutionary constraints in terms of a probabilistic 
grammar of evolutionary HMM modules, which, in turn, 
model the low-level sequence homologies. The resulting 
cross-genomic models can be used in a generative or 
discriminative manner for modeling and alignment of 
sequences or detection of new molecules, respectively. 

The paper is organized as follows. We first give some 
brief background on peptide hormones and computational 
methods for modeling peptides in the introduction. Then 
we introduce the hierarchical grammars of functional 
elements in Section 2. We present experimental results in 
Section 3, and conclude with a brief discussion in 
Section 4. 

1.1 Peptide Hormones 

Peptide hormones represent a large class of first 
messengers in a signal transduction pathway that 
operates through activation of G protein coupled 
receptors (GPCRs).  GPCRs represent the largest gene 
family, making up perhaps 3% of the mammalian genome 
[2]. Because of their extracellular sites of action and 
importance as first messengers for cellular signaling, 
GPCRs have become a primary target for drug 
development.  In fact, about half of all pharmaceuticals 
act as agonists or antagonists of GPCRs.  For many 
newly identified GPCRs, an endogenous ligand is not 
known (orphan GPCRs), and discovering their ligands 
plays a key role in the discovery of drug candidates that 
act on the associated signal transduction pathways. 
Although the receptors possess an easily recognized 
primary and tertiary structure, their endogenous ligands, 
and the prohormones from which they are derived, are 
very difficult to identify.  The set of known peptide 
ligands consists of short protein sequences and displays 
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few signs of homology or easily identifiable subdomains. 
The principal method today for identifying novel peptide 
hormones entails purification and sequencing of the 
active ligand from some mammalian tissue based upon 
activation of a known or orphan GPCR, which is a slow 
and costly process.

1.2 Computational Methods of Peptide Modeling 

The problem of computational peptide hormone 
discovery based on the genomic structure alone proves to 
be difficult. An attempt to build models by specifying 
rules via deterministic grammars within the inductive 
logic grammar framework is described in [4], where, by 
enforcing the existence of signal sequences and splicing 
sites through a deterministic context-free grammar, a 
sieve for possible prohormone sequences is proposed. 
Even without the insight provided by evolutionary 
forces, the resulting method is able to eliminate 
structurally unlikely candidates, but due to the ubiquitous 
existence of double basic residues throughout protein 
sequences, its selectivity turns out to be poor.

Phylogenetic HMMs, or phylo-HMMs, are probabilistic 
models that combine HMMs and phylogenetic models in 
order to explain the spatial (genomic) and temporal 
(evolutionary) characteristics of a sequence. The first 
introduction of phylo-HMMs was motivated by the need 
to improve phylogenetic models that allow for variation 
in the substitution rate across sites [5, 6]. The problem of 
secondary structure prediction was addressed next [7, 8]. 
There has been a recent marked increase in the interest in 
these models as cross-genomic data become available in 
large quantities and approaches that are informed by 
evolutionary pressures become enormously useful [1, 9-
12]. Particularly, they have been applied to cross-genome 
gene prediction [13, 14]. Another similar structure is the 
evolutionary HMM [15, 16] (note that we use this name 
more generally in this paper, not referring to this specific 
model only) that accounts for the phylogenetic 
information using generalizations of pairwise-HMMs, in 
a way similar to our approach. Evolutionary HMMs do 
not model the genomic structure directly, though, and the 
spatial part of the model is used to track the shifts in 
phylogenetic parameters. Match profile HMMs 
(MPHMMs) [17] combine the capabilities of two types of 
HMMs in that they use a profile HMM structure in 
modeling the sequence structure and a pairwise HMM (or 
a multiple-genome generalization) in modeling the 
evolutionary characteristics across species.

2. HIERARCHICAL GRAMMARS OF 
EVOLUTIONARY HMMS

Hierarchical grammars of evolutionary HMMs, such as 
phylo-HMMs or MPHMMs, are probabilistic models that 
take into account the way substitutions take place in the 
evolutionary path at specific sites along the genome and 
the specific patterns of change from one site to the next. 
Figure 1 shows a hierarchical grammar of evolutionary 
HMM modules for a prohormone. At the functional-level 
hierarchy, the model is specified in terms of its 
functional elements, such as signal sequences, splicing 
sites, and so on. The underlying evolutionary HMM 
modules carry out the local multiple alignments with 
respect to the phylogenetic relationship warranted by the 
context. This kind of hierarchical alignment is 
significantly more informative than a conventional 
multiple sequence alignment in that it provides a 
segmentation. For the hormone problem, the most 
important feature of a cross-genome alignment turns out 
to be the difference between the substitution rates of the 
functional and the nonfunctional subsequences around 
(predominantly double basic residue) splicing sites.  

Let us define the computational structure of a 
hierarchical grammar of functional-evolutionary model 
modules (MPHMMs or phylo-HMMs) by the four-tuple,  

( , , )θ = Π G α,β where
1

{ ,..., }
M

π π=Π  is a set of 

functional component states (for functions such as a 
signal sequence, a splicing site, or a peptide) with the set 
of associated functional element models, 

1
{ ,..., }

M
G G=G , with the model 

j
G  accounting for the 

part of the sequence alignment at the component state 

j
π . { }, (1 , )

jk
j k Mα= ≤ ≤α , and

1
{ ,... }

M
β β=β  are the 

matrix of component state transition probabilities and the 
vector of initial probabilities, respectively. In this 
formulation, for the sake of descriptive efficiency, we are 
describing the basic two-level hierarchy of models, 
which can, in our implementation, entail more levels. In 
the lower level of the hierarchy, each component 
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 model is a vector output HMM (such as a MPHMM) 
with an alphabet consisting of the four-tuple, 

( , , , )j j j j

j
G = S λ A b , where 

j
S is a set of states associated 

with the functional component module. For example, a 
simple double basic residue cleavage site HMM would 
have two states that emanate multiple alignments of Arg 
and Lys residues. This structure  also supports 
hierarchical grammars of phylo-HMMs [3]. In that case, 

( , , , )j j j j

j
G = Q ω σ δ , where jQ is the substitution matrix 

defined with respect to the alphabet of amino acids, j
ω

is a vector of equilibrium frequencies, j
σ is the binary 

phylogenetic tree with the set of branch lengths j
δ .

Felsenstein’s “pruning” algorithm [18] is used for the 
phylogenetic model optimization.  
In this two-level hierarchical approach, there are two 
types of alignments, (i) functional alignments at the high 

level,
1

( ,..., )
L

C C C= , and (ii) state module alignments at 

the lower level, 
1

( , ..., )
k

k k k

L
X X X= , 1,...,k L= . To 

illustrate this point, Figure 2 shows a hierarchical 
alignment for Prepronociceptin from five species 
(human, chimp, mouse, rat, cow), where the boxes show 
the functional element sequence and actual sequence 
alignments are shown. Given the above setting, HIGHER 
computes the joint probability of a functional level path 
and alignment, which is given by 

1 1 1
1

2

( | ) ( | ) ( | )
i i i

L

i

i

P P C G P C Gφ φ φ φ φφ β α
−

=

= ∏, C θ

,
where, in turn, each of the functional module state 
alignments is given by 

1 1 1
1

2

( | ) ( | ) ( | )
i i i

L
j j j j j j j

j i

i

P G b P X a P Xτ τ τ τ τλ λ
−

=

= ∏τ, X
.

The likelihood of the model ( ) ( , )P P
φ

φ=∑C | θ C | θ  is 

found by summing over all possible paths, and the 
maximum likelihood path is the path that maximizes that 
sum. The computation of these quantities and the state 
posterior probabilities is facilitated by the Markovian 
structure that allows standard dynamic programming 
based solutions through the use of Viterbi and forward-
backward algorithms.  
The most compelling feature of the proposed 
computational framework is the enabling of the scientist 
to incorporate a priori functional-level knowledge 
directly into the model topology in a straightforward 
manner. Through its high-level grammar, it allows 
modeling and testing of hypotheses that are specified in 
terms of functional components such as signal sequences, 
splicing sites, and peptide hormones. Rather than merely 
exploratory analyses of the cross-genomic relationships, 
the hierarchical grammar of MPHMMs enables the 

biologist to specify a genomic structure along with its 
phylogenetic attributes. 

3. EXPERIMENTAL RESULTS 

3.1. Bioinformatics Results 
As a proof of principle, we present results on SwissProt, 
a database containing a large number of known 
hormones. Because the functions of all the proteins in 
SwissProt are known, this search does not produce novel 
peptide hormones, but it produces a detection metric for 
the

performance of the search paradigm. Note that the 
structural profile HMMs for the signal sequence and the 
splicing sites have not been trained with these proteins, 
and in HIGHER we do not train sequence structure 
models for hormones, so our SwissProt set constitutes an 
independent test set. For one specific threshold, we were 
able to identify 45 out of 54 prohormones known to be in 
SwissProt with 44 false alarms In terms of detection 
performance, this corresponds to a point on the ROC 
curve with sensitivity of 83%, and specificity of more 
than 99.9% (44 false hits on a SwissProt set with 122,564 
proteins).

3.2. Biochemistry Results 

We present preliminary biochemistry results on a protein 
(found across human and mouse proteins) that has so far 
been our top candidate.  We believe that this will 
represent at least one novel neuropeptide, and we have 
named it Neuropeptide Q (NPQ), because three out of the 
four potential neuropeptides from this protein have at 
least one glutamine.  This protein is the perfect example 
of our hypothetic neuropeptide model.  Between double 
basic residues, the homology is high.  Outside these 
residues the conservation is quite low.  The protein 
sequence of the human and rat were predicted from gene 
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finding programs.  These proteins have no apparent 
homology to any other proteins, and no known function.   

Our preliminary investigation of this protein, using RT-
PCR, shows transcripts in human, mouse, and rat brain.  
We have cloned and verified the sequence of the human, 
mouse, and rat cDNA.  Northern analysis using a human 
tissue blot (Clontech) showed the presence of message in 
brain, pancreas, but most prominently in the kidney  
Therefore, NPQ may be one of many peptides (such as 
vasopressin) found in both brain and kidney. We have 
cloned and verified the sequence of the human, mouse, 
and rat cDNA.  In collaboration with Dr. Stan Watson 
(University of Michigan) we have also conducted studies 
to determine regional localization in brain by in situ 
hybridization.  This experiment shows a very discreet 
localization in what appears to be locus ceuruleus (LC).  
This peptide is therefore likely to be found in 
noradrenergic cells of the LC.  These cells have 
projections in many parts of the brain and are likely to 
have effects on mental health and psychiatric diseases. 
We will soon know if this protein is processed in the way 
that we anticipate. The GPCR to which this peptide (or 
any of the peptides from this protein) binds is not known 
at this time.  No other information is known about this 
protein and its potential peptides.  In fact, other than 
computationally, there would be no reason to believe that 
this protein is processed in any special way.  However, in 
light of our computational model of a neuropeptide and 
species comparison, it seems highly likely that there will 
be peptides generated from this protein that have 
biological activity. 

4. CONCLUSIONS 

We have presented a computational framework that is 
capable of accounting for protein structure and cross-
species evolutionary divergence simultaneously. By 
aligning low-level evolutionary HMM modules within a 
high-level functional-element grammar, it is possible to 
build precise models of the effects of evolutionary 
pressures on genomic structures. In particular, we have 
applied this technique to modeling of prohormones 
across species with the goal of identifying novel 
prohormones and associated peptide hormones based on 
their evolutionary divergence profiles and genomic 
structures. The technique has resulted in high accuracy 
detection on a known dataset and led to putative 
hormones on a set of hypothetical proteins. Biochemical 
validation of the findings have started and produced 
promising results. 
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