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ABSTRACT

This paper considers the problem of learning cellular signaling net-
works from incomplete measurements of pathway activity. Cells re-
spond to environmental changes (e.g., starvation, heat shock) via a
sequence of intracellular protein-protein interactions, leading to the
production of proteins which modify their fundamental operations.
Biologists have discovered some of these signaling pathways, but the
knowledge of cellular signaling is still very incomplete. Mathemati-
cally, the problem of genomic network tomography (GNT) – identi-
fying cellular signaling networks from biological data – is similar to
network inference problems arising in communication systems. This
paper formulates GNT and presents a solution which builds on state-
of-the-art communication network inference techniques while taking
into account uncertainties which are inherent in biological data.

Index Terms— Networks, Biological systems, Communication
systems, Monte Carlo methods

1. INTRODUCTION

In living cells, signaling pathways communicate information about
extracellular conditions from the cell wall to the nucleus, leading to
changes in the expression of genes and their protein products, en-
abling the cell to adapt to its environment. Each signaling pathway
comprises a sequence of protein-protein interactions. Viewed collec-
tively, the signaling pathways overlap to form a signaling network.
Biologists have discovered certain pathways, but the current knowl-
edge of cellular communications is still very incomplete. Due to the
intrinsic dif culties of intracellular measurement, we consider the
problem of inferring a cellular signaling network from co-occurrence
data: observations in the form of lists of the proteins co-occurring
in different signaling pathways, without information about pathway
structure (i.e., the order of proteins in each pathway). We call this
problem genomic network tomography (GNT), due to its strong re-
semblance (both physical and mathematical) to tomographic imag-
ing and network tomography problems.

Formally, the GNT problem is de ned as follows. The network
is modelled as a directed graph, G = (V, E), with vertex set V =
{1, 2, . . . , |V |} and edge set E ⊆ V ×V , where (i, j) ∈ E denotes
a directed edge from i to j. The graph contains one vertex for each
signaling protein and one edge for each protein-protein interaction.
Our goal is to infer the graph structure from a collection ofM protein
lists, Y = {y(1), . . . ,y(M)}, where y(m) = {y(m)

1 , . . . , y
(m)

|V | } ∈
{0, 1}|V |, and y

(m)
i is a noisy (i.e., possibly wrong) indicator of the

observed occurrence (y(m)
i = 1) or absence (y(m)

i = 0) of protein i
in hemth pathway. The aim of GNT is to infer E from Y .

Without order information, every permutation of active proteins
may lead to a different feasible network, yielding a combinatorial

explosion of the feasible set. However, physical principles under-
lying signaling networks suggest that not all feasible solutions are
equally likely, since closely connected proteins will co-occur more
often. We exploit this intuition to devise a network inference strat-
egy, explicitly modelling the sequential nature of signaling.

GNT is quite similar to the problem of network inference from
co-occurrences (NICO) [1], which we previously developed to iden-
tify telecommunication networks [2]. The current paper investigates
the GNT problem and extends NICO to noisy data, inevitable in bi-
ological experimentation, leading to new algorithms that are better
suited to GNT. Thus, we refer to the mathematical problem tackled
in this paper as network inference from co-occurrences with uncer-
tainty (NICOU). The theory and methods herein presented are pre-
liminary: much work needs to be done before GNT (potentially)
becomes a useful tool for in silico genomics. The aim of this paper
is to mathematically de ne the basic form of the GNT problem and
to offer an initial solution scheme. For example, although it’s sus-
pected that some pathways are tree-structured or may include feed-
back loops, we limit our investigation to linear signaling pathways
(simple protein-protein chains). Despite its limited scope, we hope
this paper will stimulate further research in this important problem.

1.1. High-Throughput Sources of Co-Occurrence Data

There are several high-throughput genomic and proteomic measure-
ment modalities that provide (possibly noisy) co-occurrence data.
1. Multiparameter ow cytometry (FC) simultaneously measures
the activity levels of multiple proteins in a given sample. The FC
data used in [3] only measures activity levels of 11 proteins, but
novel labelling approaches promise to improve upon these limits,
making FC applicable to larger protein network studies [4].
2. Gene knock-out experiments can also be used to construct a list
of proteins involved in a pathway by including a protein in the list
if its corresponding deletion mutant produces signi cantly different
expression responses than the wildtype [5].
3. Protein chip data implicates proteins that are actively phospho-
rylated under a speci c condition. Since phosphorylation reactions
are a primary mechanism underlying cell signaling, this data can also
be used to obtain lists of proteins in a pathway [6].
4. The existing literature provides a wealth of knowledge of pu-
tative signaling pathways and pathway components. In collabora-
tion with researchers at the Stowers Institute and the University of
Michigan, we have conducted GNT experiments using protein lists
reported in the literature [7].
5. Protein-protein interactions (PPI) are a fundamental mecha-
nism underlying cell signaling. Although PPIs do not directly in-
dicate which pathways a protein belongs to, PPI data can easily be
used as a probabilistic prior on network topology structure.
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Note that these data types do not directly provide hard (binary)
lists of proteins in each pathway. Rather, they may relate soft infor-
mation such as the likelihood that each protein is active or a measure
of the abundance of the protein. Our approach can accommodate this
type of soft data, as well as (possibly noisy) binary data.

1.2. Related Work

Most previous work on inferring signaling pathways/networks from
high-throughput data is based on learning the structure of a Bayesian
network (probabilistic graphical model) [3, 8]. These approaches
are based on the assumption that proteins with similar expression
pro les are probably connected. In contrast, our approach is based
on the intuition that proteins which co-occur frequently (i.e., appear
together in many pathways) are more likely to physically interact.
The connectivity structure of graphical models corresponds to con-
ditional dependency/independency relationships between protein ac-
tivity levels, and it is recognized that this structure does not neces-
sarily correspond to physical mechanisms underlying cell signaling
[9]. Researchers have also proposed using additional experiments,
after learning an initial graphical model, to recover causal network
structure. For example, Sachs et al. [3] use FC data to learn a family
of in uence networks (directed graphical models–DGM); they then
perform model averaging over this family of DGMs and use deletion
interventions to resolve the resulting average DGM into a causal net-
work. The solutions produced by their approach rely on the initial
family of DGMs to capture all potential physical interactions.

Another body of work seeks to learn individual signaling path-
ways from gene expression and PPI data [10, 11, 12]. Such methods
assume that the underlying network structure is given via PPI data
and seek to learn the subset of edges in the network corresponding to
a particular pathway. However, PPI is among the noisiest, least re-
liable high-throughput data; thus, the PPI networks, on which these
procedures are based, may lack critical links or include extraneous
ones. Rather than constraining the inferred network to be a subset
of the noisy PPI network, we can incorporate it as a prior, allowing
our procedure to tease out true connectivity using all of the available
data.

2. AN INFERENCE STRATEGY FOR GNT

We adopt the following generative observation model. Let w =
(w1, . . . , wN ) ∈ V N , be an ordered pathway. We model pathways
as iid samples of a Markov chain (MC), parameterized by an initial
state distribution, pi = P(w1 = i), for i ∈ V , and a matrix of tran-
sition probabilities, Pi,j = P(wt = j|wt−1 = i), for (i, j) ∈ V 2,
where Pi,j > 0 if and only if (i, j) ∈ E. This is not to say that
biological systems actually work according to an MC; it is a simple
mathematical model which aptly captures rst-order network behav-
ior. Let θ = {pi}i∈V ∪ {Pi,j}(i,j)∈V 2 denote the entire collection
of MC parameters, which satisfy

∑|V |
i=1 pi = 1, and

∑|V |
j=1 Pi,j = 1

for every i ∈ V . To model the fact that observations lack order
information, we de ne a co-occurrence as a shuf ed version of a
path. Let π : (1, . . . , N) → (π(1), . . . , π(N)) be a permutation
drawn uniformly at random from SN , the set of all permutations of
N objects. A co-occurrence x ∈ V N is related to the path w via
wt = xπ(t).

The discussion below will make use of equivalent binary repre-
sentations for Markov chain samples, co-occurrences, and permuta-
tions. For a length-N pathw, the equivalent binary representation is
a binary-valued matrixW ∈ {0, 1}N×|V | such that if wt = i then
Wt,i = 1 andWt,j = 0 for all j �= i; for a co-occurrence x ∈ V N ,

we have the analagous binary representation, X ∈ {0, 1}N×|V |.
With this notation, the log-probability of a path can be written as

log P(W|θ) =

|V |∑
i=1

W1,i log pi +

N∑
t=2

|V |∑
i,j=1

Wt−1,iWt,j log Pi,j ,

(with the usual convention 0 log 0 = 0). Let Aπ ∈ {0, 1}N×N

be the permutation matrix corresponding to permutation π, that is,
Aπ

t,t′ = 1 ⇔ π(t) = t′. In this notation,W = AπX, thusWt,i =∑N
t′=1 Aπ

t,t′Xt′,i, and we can write

log P(X|π, θ) =

|V |∑
i=1

N∑
t′=1

Aπ
1,t′Xt′,i log pi

+

N∑
t=2

|V |∑
i,j=1

N∑
t′,t′′=1

Aπ
t−1,t′Xt′,iA

π
t,t′′Xt′′,j log Pi,j . (1)

Finally, we model a noisy observation of the co-occurrence X
as a binary vector y ∈ {0, 1}|V |, where yi = 1 if vertex i is impli-
cated in the path. We assume that the observations at different nodes
(components of y) are mutually independent, and that observation
yi only depends on whether node i actually occurs in the path. Let
Si =

∑N
t=1 Xt,i denote a variable indicating whether vertex i oc-

curs in this path; since each vertex appears at most once in a path,
Si ∈ {0, 1}. We model yi as an observation of Si through a bi-
nary channel with (known) parameters ρ0 = P(yi = 0|Si = 0) and
ρ1 = P(yi = 1|Si = 1). Denoting ρ̃1 = 1− ρ1 and ρ̃0 = 1− ρ0,

P(yi|Si) = (ρ1)
yi Si (ρ̃1)

(1−yi) Si (ρ̃0)
yi (1−Si) (ρ0)

(1−yi) (1−Si).

Finally, assuming mutual independence, P(y|X) =
∏|V |

i=1 P(yi|Si).

2.1. Network Inference

Our goal is to infer the network structure E from a collection of
M iid observations, Y = {y(1), . . . ,y(M)}. Given the model de-
scribed above, network inference reduces to estimating the MC pa-
rameters θ. In particular, given an estimates of these parameters, we
can determine the most likely structure of each path, and it is easy
to determine the structure of a network from a set of ordered paths
simply by inserting edges between adjacent vertices in each path.

Adopting the maximum likelihood (ML) criterion, we seek

θML = arg max
θ

log P(Y|θ), (2)

subject to above mentioned constraints on θ. It is possible to write an
exact expression for the objective function, log P(Y|θ), based on the
model described in the previous section. However, it turns out that,
in general, the objective is a complicated, multi-modal, non-convex
function of θ, so tools from convex optimization cannot be applied
directly with any guarantees. Moreover, even computing log P(Y|θ)
at one particular value of θ requires evaluating a number of terms
which scales exponentially in both M and |V |. Thus, direct opti-
mization methods (e.g., gradient descent) are not computationally
tractable in this setting. Determining the global optimum would re-
quire exhaustive search which is also computationally intractable.

3. EM ALGORITHM

We now describe an ef cient expectation-maximization (EM) algo-
rithm for solving (2), based on treating the co-occurrences, X =
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{X(1), . . . ,X(M)}, and permutations, Π = {π(1), . . . , π(M)}, as
missing data which, together with the observations, Y , form the
complete data. The EM algorithm alternates between an E-step
which computes

Q(θ; θk) = E

[
log P(Y,X , Π|θ)

∣∣∣ Y, θk
]
, (3)

and an M-step, which updates the parameter estimate according to
θk+1 = arg maxθ Q(θ; θk), subject to the constraints ensuring the
parameters form a distribution. Because log P(Y|θ) is continuous
w.r.t. θ, and bounded above, standard convergence results for EM
guarantee monotonic convergence to a local maximum [13].

3.1. Exact E-Step

Observe that, based on the assumption that observations are iid,

log P(Y,X , Π|θ) =

M∑
m=1

log P(y(m),X(m), π(m)|θ). (4)

Then, according to the model described in Section 2,

log P(y(m),X(m), π(m)|θ)

= log P(y(m)|X(m)) + log P(X(m)|π(m), θ) + log P(π(m)).

Since log P(y(m)|X(m)) and log P(π(m)) do not involve θ, they
will not affect the outcome of the M-step, and so we can drop them.

Expression (1) shows that log P(X(m)|π(m), θ) is linear w.r.t.
simple binary functions of (X , Π): α

(m)
i =

∑N
t′=1 Aπ(m)

1,t′ X
(m)

t′,i ,
which equals one if and only if themth path starts at vertex i, and

β
(m)
i,j =

N∑
t=2

N∑
t′,t′′=1

Aπ(m)

t−1,t′X
(m)

t′,i Aπ(m)

t,t′′ X
(m)

t′′,j ,

which equals one if and only if the mth path contains a transition
from i to j. Since the conditional expectation is a linear operator,
given Y and θk, the E-step boils down to computing

ᾱ
(m)
i = E

[
α

(m)
i

∣∣y(m), θk
]
for i ∈ V andm = 1, . . . , M ;

β̄
(m)
i,j = E

[
β

(m)
i,j

∣∣y(m), θk
]
for i, j ∈ V andm = 1, . . . , M.

With these expected suf cient statistics in hand, we have

Q(θ; θk) ∝
M∑

m=1

⎛⎝ |V |∑
i=1

ᾱ
(m)
i log pi +

|V |∑
i,j=1

β̄
(m)
i,j log Pi,j

⎞⎠ . (5)

One can derive exact expressions for {ᾱ(m)
i }, and {β̄(m)

i,j }. In
fact, since the E-step decouples w.r.t. each observation, the resulting
computational cost is linear in M (compare to direct optimization
which is exponential inM ). However, the need to marginalize over
all possible co-occurrences makes the exact E-step have exponential
cost in the number of vertices, |V |, thus being intractable except for
very small networks. We will work around this issue in Section 4

3.2. M-Step

The M-step updates the parameter estimates, setting θk+1 equal to
the maximizer of Q(θ; θk), which is a concave function of pi and
Pi,j . Maximizing (5), under the normalization constraints, yields

pk+1
i =

∑M
m=1 ᾱ

(m)
i∑|V |

i=1

∑M
m=1 ᾱ

(m)
i

(6)

P k+1
i,j =

∑M
m=1 β̄

(m)
i,j∑|V |

j=1

∑M
m=1 β̄

(m)
i,j

. (7)

4. MONTE CARLO EM VIA IMPORTANCE SAMPLING

Given the combinatorial nature of the exact E-step (enumerating ev-
ery permutation of all co-occurrences), exact computation is gener-
ally intractable. Instead, we use Monte Carlo methods, importance
sampling (IS), in particular, to approximate the suf cient statistics.
To lighten notation in this section we drop the superscript k from
θk, using θ, pi, and Pi,j to denote the current parameter estimates.
Also, we focus on a particular path, thus drop the superscript (m).

Recall that ᾱi and β̄i,j are conditional expectations; e.g.,

ᾱi = E

[
N∑

t′=1

Aπ
1,t′Xt′,i

∣∣y, θ

]

=
∑
X

∑
π

(
N∑

t′=1

Aπ
1,t′Xt′,i

)
P(X, π|y, θ). (8)

An ideal Monte Carlo algorithm would generate L iid sample pairs
{(X�, π�)}L

�=1 from the joint distribution P(X, π|y, θ), and use
them to approximate this expectation. However, this is not practical
in the present setting since determining the distribution P(X, π|y, θ)
requires evaluating it for every possible co-occurrence and permu-
tation, which is the task we are trying to avoid in the rst place.
Instead we propose the following sequential scheme for sampling
co-occurrences and permutations.

First, we sample a co-occurrence by drawing S�
i from {0, 1}

independently for each i ∈ V , such that S�
i = 1 with probability

yi ρ1 + (1− yi)ρ̃0; this produces a co-occurrenceX�.
Next, we sample a permutation, π�, givenX�, using the sequen-

tial procedure developed in [1]. This amounts to sampling a probable
ordering of the vertices in X�. To ensure that no co-occurring ver-
tex is sampled twice we use a vector of binary ags, f ∈ {0, 1}|V |.
Given a probability distribution p = (p1, . . . , p|V |) on the vertex
set, V , denote by p|f the restriction of p to f , i.e.,

(p|f)i =
pifi∑|V |

j=1 pjfj

; for i ∈ V. (9)

We sample a permutation as follows:
Step 1: Initialize f so that fi = S�

i for all i ∈ V . Sample
an element v from V according to the distribution p|f on V , where
p = (p1, . . . , p|V |) is the initial state distribution. Find t such that
X�

t,v = 1 and set π(1)← t. Update fv ← 0 and set i ← 2.
Step 2: LetPv = (Pv,1, . . . , Pv,|V |), i.e., the vth row of transi-

tion probabilities. Sample an element v′ according to the distribution
Pv|f . Find t′ such thatX�

t′,v′ = 1. Set π(i) ← t′ and fv′ ← 0.
Step 3: If i <

∑|V |
i=1 S�

i , update v ← v′ and i ← i + 1, and go
to Step 2; otherwise stop.

Repeating this sampling procedure L times yields a collection
of iid samples {(X�, π�)}L

�=1, where the superscript now identi es
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the sample number. Samples generated according to this scheme are
drawn from a distribution Q(X, π|y, θ) which is different from the
distribution P(X, π|y, θ). IS estimates correct for this disparity and
are given by the expressions

α̂i =

∑L
�=1 u�

∑N
t′=1 Aπ�

1,t′X
�
t′,i∑L

�=1 u�

β̂i,j =

∑L
�=1 u�

∑N
t=2

∑N
t′,t′=1 Aπ�

t−1,t′X
�
t′,iA

π�

t,t′′X
�
t′′,j∑L

�=1 u�

,

where the correction factor u� is given by

ul =
P(X�, π�|y, θ)

Q(X�, π�|y, θ)
=

N∏
t=2

N∑
t′=t

Px�
π�(t−1)

, x�
π�(t)

. (10)

Correcting in this fashion ensures that the importance sample esti-
mates are consistent. In fact, terms in the product (10) are byprod-
ucts of Step 2 of the sampling algorithm (denominators of (Pv|f)).

When using IS in place of the exact E-step, one is confronted
with the question: what number of samples, L, is suf cient? With-
out enough samples the IS approximations will be of poor quality,
and the EM will no longer converge to a local maximum because
it is overwhelmed with sampling error. On the other hand, our mo-
tivation for using IS in the rst place is because the exact E-step
is intractable, so we would like to use as few samples as possible
while still guaranteeing convergence. It is possible to show (using
arguments similar to those in [1]) that the IS-based EM keeps the
monotonic convergence properties of the exact EM when using a
number of samples, L, which grows polynomially in both the net-
work size |V |, and the number of observations, M . In particular,
each IS-based EM iteration monotonically increases the objective
function with probability at least 1 − δ(L), where δ(L) tends to 0
exponentially as L →∞. We omit the details due to lack of space.

5. SIMULATIONS

This section reports the outcome of testing our algorithm on simu-
lated data. The observations are noisy co-occurrences sampled from
a random network with 50 vertices (intended to re ect the size and
complexity of currently known/conjectured signal transduction net-
works). We generate M = 50, 100, and 200 paths, by randomly
choosing sources and destination vertices, and randomly generating
paths between them. The paths are reduced to co-occurrences, and
then observations are obtained by contaminating the co-occurrences
with binary noise (as described above) with ρ0 = ρ1 = 0.01. We
compare the performance of the NICOU scheme introduced in this
paper, with that of the NICO algorithm described in [1] which does
not account for observation uncertainty. Performance is measured in
terms of the normalized �1 error ε1(θ̂) = 1

|V |
∑|V |

i,j=1

∣∣P ∗i,j − P̂i,j

∣∣,
where {P ∗i,j} are the transition probabilities corresponding to the
true paths underlying the observations, and {P̂i,j} are the estimated
transition probabilities. This metric measures how well the inferred
parameters match what one would be able to recover if it were pos-
sible to precisely measure ordered paths through the network.

Table 1 summarizes the results of our experiments. When only
M = 50 observations are made, there is not enough “signal”, rel-
ative to the amount of noise, to tease apart true network structure
from errors in the observations, and both techniques do equally as
well. However, as more and more measurements become available,
NICOU performs signi cantly better than NICO, as it is able to com-
pensate for extraneous or missing elements in each pathway.

M NICO NICOU
50 0.5331 0.5688
100 0.4030 0.3196
200 0.0875 0.0405

Table 1. Simulation results. Comparing the average �1 error of the
NICOU algorithm described in this paper with the NICO algorithm
of [1], which does not account for uncertainty in the measurements.
Each entry represents the average over 10 random networks.

6. CONCLUSION

This paper poses the problem of genomic network tomography and
proposes an initial solution. Our ongoing work involves extending
the algorithm to handle more complicated pathway measurements
(trees and other graphs) and other types of biological data. We are
also beginning the process of testing NICOU on real biological data.
Based on the initial success reported in [7], we believe that the pro-
posed approach to genomic network tomography is very promising.
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